Capture and Identification of RNA-binding Proteins by Using Click Chemistry-assisted RNA-interactome Capture (CARIC) Strategy.

J Vis Exp

College of Chemistry and Molecular Engineering, Peking University; Beijing National Laboratory for Molecular Sciences, Peking University; Peking-Tsinghua Center for Life Sciences, Peking University; Synthetic and Functional Biomolecules Center, Peking University; Key Laboratory of Bioorganic Chemist

Published: October 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A comprehensive identification of RNA-binding proteins (RBPs) is key to understanding the posttranscriptional regulatory network in cells. A widely used strategy for RBP capture exploits the polyadenylation [poly(A)] of target RNAs, which mostly occurs on eukaryotic mature mRNAs, leaving most binding proteins of non-poly(A) RNAs unidentified. Here we describe the detailed procedures of a recently reported method termed click chemistry-assisted RNA-interactome capture (CARIC), which enables the transcriptome-wide capture of both poly(A) and non-poly(A) RBPs by combining the metabolic labeling of RNAs, in vivo UV cross-linking, and bioorthogonal tagging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6235571PMC
http://dx.doi.org/10.3791/58580DOI Listing

Publication Analysis

Top Keywords

identification rna-binding
8
rna-binding proteins
8
click chemistry-assisted
8
chemistry-assisted rna-interactome
8
rna-interactome capture
8
capture caric
8
capture
5
capture identification
4
proteins click
4
caric strategy
4

Similar Publications

Background: Emerging evidence indicates that lactase-mediated histone lactylation can activate osteogenic gene expression and promote bone formation. However, the role of lactylation-related genes (LRGs) in osteoporosis (OP) remains unclear. This study aims to clarify the key roles of LRGs and the molecular mechanisms of related biomarkers in OP.

View Article and Find Full Text PDF

RNA-protein interactions critically regulate gene expression and cellular processes, yet their comprehensive mapping remains challenging due to their structural diversity. We introduce PRIM-seq (protein-RNA interaction mapping by sequencing), a method for concurrent de novo identification of RNA-binding proteins and their associated RNAs. PRIM-seq generates unique chimeric DNA sequences by proximity ligation of RNAs with protein-linked DNA barcodes, which are subsequently decoded through sequencing.

View Article and Find Full Text PDF

Clusters of deep intronic RbFox motifs embedded in large assembly of splicing regulators sequences regulate alternative splicing.

PLoS Genet

September 2025

Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America.

The RbFox RNA binding proteins regulate alternative splicing of genes governing mammalian development and organ function. They bind to the RNA sequence (U)GCAUG with high affinity but also non-canonical secondary motifs in a concentration dependent manner. However, the hierarchical requirement of RbFox motifs, which are widespread in the genome, is still unclear.

View Article and Find Full Text PDF

The ability of an organism to identify self and foreign RNA is central to eliciting an immune response in times of need while avoiding autoimmunity. As viral pathogens typically employ double-stranded RNA (dsRNA), host identification, modulation, and response to dsRNA is key. However, dsRNA is also abundant in host transcriptomes, raising the question of how these molecules can be differentiated.

View Article and Find Full Text PDF

Spinal cord injury (SCI) represents one of the recognized difficulties, and its pathological mechanisms remain unclear. Aberrant regulation of the RNA-binding protein (RBP) and selective splicing are associated with SCI. Nonetheless, the mechanisms of RBP regulation and abnormal selective splicing events associated with SCI are unexplored.

View Article and Find Full Text PDF