98%
921
2 minutes
20
A comprehensive identification of RNA-binding proteins (RBPs) is key to understanding the posttranscriptional regulatory network in cells. A widely used strategy for RBP capture exploits the polyadenylation [poly(A)] of target RNAs, which mostly occurs on eukaryotic mature mRNAs, leaving most binding proteins of non-poly(A) RNAs unidentified. Here we describe the detailed procedures of a recently reported method termed click chemistry-assisted RNA-interactome capture (CARIC), which enables the transcriptome-wide capture of both poly(A) and non-poly(A) RBPs by combining the metabolic labeling of RNAs, in vivo UV cross-linking, and bioorthogonal tagging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6235571 | PMC |
http://dx.doi.org/10.3791/58580 | DOI Listing |
Front Endocrinol (Lausanne)
September 2025
Department of Orthopedics I, Second Affiliated Hospital, Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China.
Background: Emerging evidence indicates that lactase-mediated histone lactylation can activate osteogenic gene expression and promote bone formation. However, the role of lactylation-related genes (LRGs) in osteoporosis (OP) remains unclear. This study aims to clarify the key roles of LRGs and the molecular mechanisms of related biomarkers in OP.
View Article and Find Full Text PDFNat Biotechnol
September 2025
Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, USA.
RNA-protein interactions critically regulate gene expression and cellular processes, yet their comprehensive mapping remains challenging due to their structural diversity. We introduce PRIM-seq (protein-RNA interaction mapping by sequencing), a method for concurrent de novo identification of RNA-binding proteins and their associated RNAs. PRIM-seq generates unique chimeric DNA sequences by proximity ligation of RNAs with protein-linked DNA barcodes, which are subsequently decoded through sequencing.
View Article and Find Full Text PDFPLoS Genet
September 2025
Neural Development Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America.
The RbFox RNA binding proteins regulate alternative splicing of genes governing mammalian development and organ function. They bind to the RNA sequence (U)GCAUG with high affinity but also non-canonical secondary motifs in a concentration dependent manner. However, the hierarchical requirement of RbFox motifs, which are widespread in the genome, is still unclear.
View Article and Find Full Text PDFThe ability of an organism to identify self and foreign RNA is central to eliciting an immune response in times of need while avoiding autoimmunity. As viral pathogens typically employ double-stranded RNA (dsRNA), host identification, modulation, and response to dsRNA is key. However, dsRNA is also abundant in host transcriptomes, raising the question of how these molecules can be differentiated.
View Article and Find Full Text PDFACS Omega
August 2025
Department of Spine Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750001, China.
Spinal cord injury (SCI) represents one of the recognized difficulties, and its pathological mechanisms remain unclear. Aberrant regulation of the RNA-binding protein (RBP) and selective splicing are associated with SCI. Nonetheless, the mechanisms of RBP regulation and abnormal selective splicing events associated with SCI are unexplored.
View Article and Find Full Text PDF