Cancer cachexia impairs neural respiratory drive in hypoxia but not hypercapnia.

J Cachexia Sarcopenia Muscle

Center for Respiratory Research and Rehabilitation, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL, USA.

Published: February 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Cancer cachexia is an insidious process characterized by muscle atrophy with associated motor deficits, including diaphragm weakness and respiratory insufficiency. Although neuropathology contributes to muscle wasting and motor deficits in many clinical disorders, neural involvement in cachexia-linked respiratory insufficiency has not been explored.

Methods: We first used whole-body plethysmography to assess ventilatory responses to hypoxic and hypercapnic chemoreflex activation in mice inoculated with the C26 colon adenocarcinoma cell line. Mice were exposed to a sequence of inspired gas mixtures consisting of (i) air, (ii) hypoxia (11% O ) with normocapnia, (iii) hypercapnia (7% CO ) with normoxia, and (iv) combined hypercapnia with hypoxia (i.e. maximal chemoreflex response). We also tested the respiratory neural network directly by recording inspiratory burst output from ligated phrenic nerves, thereby bypassing influences from changes in diaphragm muscle strength, respiratory mechanics, or compensation through recruitment of accessory motor pools.

Results: Cachectic mice demonstrated a significant attenuation of the hypoxic tidal volume (0.26mL±0.01mL vs 0.30mL±0.01mL; p<0.05), breathing frequency (317±10bpm vs 344±6bpm; p<0.05) and phrenic nerve (29.5±2.6% vs 78.8±11.8%; p<0.05) responses. On the other hand, the much larger hypercapnic tidal volume (0.46±0.01mL vs 0.46±0.01mL; p>0.05), breathing frequency (392±5bpm vs 408±5bpm; p>0.05) and phrenic nerve (93.1±8.8% vs 111.1±13.2%; p>0.05) responses were not affected. Further, the concurrent hypercapnia/hypoxia tidal volume (0.45±0.01mL vs 0.45±0.01mL; p>0.05), breathing frequency (395±7bpm vs 400±3bpm; p>0.05), and phrenic nerve (106.8±7.1% vs 147.5±38.8%; p>0.05) responses were not different between C26 cachectic and control mice.

Conclusions: Breathing deficits associated with cancer cachexia are specific to the hypoxic ventilatory response and, thus, reflect disruptions in the hypoxic chemoafferent neural network. Diagnostic techniques that detect decompensation and therapeutic approaches that support the failing hypoxic respiratory response may benefit patients at risk for cancer cachectic-associated respiratory failure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6438337PMC
http://dx.doi.org/10.1002/jcsm.12348DOI Listing

Publication Analysis

Top Keywords

cancer cachexia
12
motor deficits
8
respiratory insufficiency
8
neural network
8
tidal volume
8
respiratory
7
hypoxic
5
cancer
4
cachexia impairs
4
neural
4

Similar Publications

Cancer cachexia is a highly debilitating clinical syndrome of involuntary body mass loss featuring profound muscle wasting leading to high mortality. Notably, cardiac wasting is prominent in cancer patients and cancer survivors. Cachexia studies present significant challenges due to the absence of human models and mainly short-term animal studies.

View Article and Find Full Text PDF

Background: Combination therapy with enfortumab vedotin plus pembrolizumab (EV+P) is now the preferred first-line (1L) therapy for advanced urothelial carcinoma (aUC), but prognostic indicators for patients on 1L EV+P have not yet been described.

Patients And Methods: We conducted a retrospective cohort study of patients receiving 1L EV+P for aUC. We analyzed deidentified electronic health record data from the Flatiron Health database to identify adults with aUC who initiated EV+P between April 3, 2023 and December 31, 2024.

View Article and Find Full Text PDF

Purpose: There are no methods for assessing the need for multimodal care in cancer cachexia. We examined nine components in evaluating needs among advanced cancer patients.

Methods: This was a self-administered survey.

View Article and Find Full Text PDF

Eggs play an important role in skeletal muscle development, but their active components are unknown. The aim of this study was to investigate the effect of yolk extract-derived vitellogenin 2 on dexamethasone (DEX)- and cancer cachexia (CC)-induced skeletal muscle atrophy. We used iTRAQ to detect the changes in protein expression between fertilized egg yolk extract (FEYE) and unfertilized egg yolk extract (UEYE).

View Article and Find Full Text PDF