98%
921
2 minutes
20
Physiological stress can bring major molecular and cellular change to a living cell which further decide its survival or tolerance to the stress exposure. Cyanobacteria like Anabaena has been shown to tolerate high levels of different stresses like oxidative, desiccation, UV, and gamma radiation. They are able to withstand and recover remarkably without any lethal mutation when exposed to high doses of gamma radiation or prolonged duration of desiccation. In the present work, the modifications in protein profiles of Anabaena 7120 cells after exposure to 6 kGy of Co γ-rays and 6 days of desiccation, and the proteome dynamics during post stress recovery were investigated. Differentially expressed proteins during stress and recovery were identified by MALDI-ToF or LC-MS, which generated a partial proteome map of Anabaena 7120. Anabaena cells went through protein recycling-phase of protein degradation following by their resynthesis, which helped them to recover remarkably. The data suggests an overlap in proteome changes during recovery against radiation and desiccation stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10930-018-9801-y | DOI Listing |
ACS Synth Biol
September 2025
Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida 32610, United States.
Heterologous expression of biosynthetic gene clusters (BGCs) is a powerful strategy for natural product (NP) discovery, yet achieving consistent expression across microbial hosts remains challenging. Here, we developed cross-phyla vector systems enabling the expression of BGCs from cyanobacteria and other bacterial origins in Gram-negative , Gram-positive , and two model cyanobacterial strains including unicellular PCC 6803 and filamentous sp. PCC 7120.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
August 2025
Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India.. Electronic address:
Photosynthetic organisms often rely on two-component regulatory system to adapt to environmental changes. This system is crucial for connecting external signals with the response mechanism by controlling gene expression, eventually allowing the organism to acclimatize to various stresses. Cyanobacteria, in particular, possess a large number of these two-component systems.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Laboratory of Microbial Genetics, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India. Electronic address:
The relationship between orthocaspases and regulated cell death in cyanobacteria has been predicted, but their functional significance remains poorly defined. Here, we characterized two orthocaspases of Anabaena PCC 7120, AnaOC2 and AnaOC6, focusing on their activation and catalytic function. These orthocaspases were calcium-independent cysteine endopeptidase having substrate specificity for basic amino acid residues.
View Article and Find Full Text PDFmSystems
July 2025
Department of Biochemistry & Molecular and Cellular Biology, University of Zaragoza, Zaragoza, Spain.
FUR proteins in sp. PCC 7120 (FurA/Fur, FurB/Zur, and FurC/PerR) are a family of transcriptional regulators involved in the control of highly important metabolic processes such as the maintenance of metal homeostasis, the regulation of oxidative stress response, and the adaptation to nitrogen starvation. Previous RNAseq analyses of FUR misregulation strains revealed a broad panel of genes directly modulated by these transcriptional regulators.
View Article and Find Full Text PDFInt J Biol Macromol
June 2025
Schulich Faculty of Chemistry, Technion, Haifa 3200003, Israel. Electronic address:
Photosynthetic organisms employ sophisticated mechanisms to mitigate photodamage caused by excessive light energy. Among these, proteins such as the Orange Carotenoid Protein (OCP) and the Helical Carotenoid Protein 4 (HCP4) play a central role in non-photochemical quenching (NPQ), by dissipating excess energy. OCP consists of two domains: the N-terminal domain (NTD), which serves as the effector domain, and the C-terminal domain (CTD), which acts as the regulatory domain.
View Article and Find Full Text PDF