Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Protecting stalled DNA replication forks from degradation by promiscuous nucleases is essential to prevent genomic instability, a major driving force of tumorigenesis. Several proteins commonly associated with the repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) have been implicated in the stabilization of stalled forks. Human CtIP, in conjunction with the MRE11 nuclease complex, plays an important role in HR by promoting DSB resection. Here, we report an unanticipated function for CtIP in protecting reversed forks from degradation. Unlike BRCA proteins, which defend nascent DNA strands from nucleolytic attack by MRE11, we find that CtIP protects perturbed forks from erroneous over-resection by DNA2. Finally, we uncover functionally synergistic effects between CtIP and BRCA1 in mitigating replication-stress-induced genomic instability. Collectively, our findings reveal a DSB-resection- and MRE11-independent role for CtIP in preserving fork integrity that contributes to the survival of BRCA1-deficient cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molcel.2018.09.014DOI Listing

Publication Analysis

Top Keywords

genomic instability
12
dna replication
8
forks degradation
8
ctip
5
ctip-mediated fork
4
fork protection
4
protection synergizes
4
synergizes brca1
4
brca1 suppress
4
suppress genomic
4

Similar Publications

Purpose: Next-generation sequencing (NGS) has revolutionized cancer treatment by enabling comprehensive cancer genomic profiling (CGP) to guide genotype-directed therapies. While several prospective trials have demonstrated varying outcomes with CGP in patients with advanced solid tumors, its clinical utility in colorectal cancer (CRC) remains to be evaluated.

Methods: We conducted a prospective observational study of CGP in our hospital between September 2019 and March 2024.

View Article and Find Full Text PDF

Aberrant DNA methylation has been described in nearly all human cancers, yet its interplay with genomic alterations during tumor evolution is poorly understood. To explore this, we performed reduced representation bisulfite sequencing on 217 tumor and matched normal regions from 59 patients with non-small cell lung cancer from the TRACERx study to deconvolve tumor methylation. We developed two metrics for integrative evolutionary analysis with DNA and RNA sequencing data.

View Article and Find Full Text PDF

Insufficient telomeric DNA damage response promotes chromosomal instability in aged oocytes.

Sci Bull (Beijing)

August 2025

MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Key Laboratory of Reproductive Medicine of Guangdong Province, School of Life Sciences and the First Affiliated Hospital, Sun Yat-sen Univ

Increased chromosomal instability impairs oocyte quality, contributing to female reproductive aging. The telomeric DNA damage response (DDR) is essential for genomic stability; however, how oocytes respond to telomeric damage remains elusive. Here, we observed that aged human germinal vesicle (GV) oocytes accumulated telomeric DNA damage.

View Article and Find Full Text PDF

Orthotopic model of tongue cancer for the study of head and neck squamous cell carcinoma in mice.

Methods Cell Biol

September 2025

Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France; Department of

Head and neck squamous cell carcinoma (HNSCC) is among the most prevalent human malignancies globally, with approximately 887,000 new cases diagnosed each year. Currently, the standard treatment for HNSCC involves surgery, followed by radiotherapy, chemotherapy and immunotherapy. However, despite these available treatments, the survival rate of patients with HNSCC remains low.

View Article and Find Full Text PDF

The RecBC complex protects single-stranded DNA gaps during lesion bypass.

Proc Natl Acad Sci U S A

September 2025

Cancer Research Center of Marseille: Team DNA Damage and Genome Instability|CNRS, Inserm, Institut Paoli-Calmettes, Aix Marseille Université, Marseille 13009, France.

Following encounter with an unrepaired DNA lesion, replication is halted and can restart downstream of the lesion leading to the formation of a single-stranded DNA (ssDNA) gap. To complete replication, this ssDNA gap is filled in by one of the two lesion tolerance pathways: the error-prone Translesion Synthesis (TLS) or the error-free Homology Directed Gap Repair (HDGR). In the present work, we evidence a role for the RecBC complex distinct from its canonical function in homologous recombination at DNA double strand breaks.

View Article and Find Full Text PDF