98%
921
2 minutes
20
Functional near-infrared spectroscopy (fNIRS) is a fast-developing non-invasive functional brain imaging technology widely used in cognitive neuroscience, clinical research and neural engineering. However, it is a challenge to effectively remove the global physiological noise in the fNIRS signal. The global physiological noise in fNIRS arises from multiple physiological origins in both superficial tissues and the brain. It has complex temporal, spatial and frequency characteristics, casting significant influence on the results. In the present study, we developed a novel wavelet-based method for fNIRS global physiological noise removal. The method is data-driven and does not rely on any additional hardware or subjective noise component selection procedure. It consists of two steps. Firstly, we use wavelet transform coherence to automatically detect the time-frequency points contaminated by the global physiological noise. Secondly, we decompose the fNIRS signal by using the wavelet transform, and then suppress the wavelet energy of the contaminated time-frequency points. Finally, we transform the signal back to a time series. We validated the method by using simulation and real data at both task- and resting-state. The results showed that our method can effectively remove the global physiological noise from the fNIRS signal and improve the spatial specificity of the task activation and the resting-state functional connectivity pattern.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6191612 | PMC |
http://dx.doi.org/10.1364/BOE.9.003805 | DOI Listing |
Nat Aging
September 2025
Aging Biomarker Consortium (ABC), Beijing, China.
The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
Department of Botany, Jamia Hamdard, New Delhi 110062, India. Electronic address:
Lanthanum (La), being one of the crucial rare earth elements (REEs), plays an explicit role in agriculture as fertilizer. Due to its hormetic response, it exhibits dualistic behaviour in Triticum aestivum (wheat) plants. Abscisic acid (ABA) is a key plant hormone regulating various physiological and metabolomic responses in plants, but the interaction between La and ABA remains unclear.
View Article and Find Full Text PDFJ Therm Biol
September 2025
Department of Integrative Biology, University of South Florida, St. Petersburg, FL, USA. Electronic address:
Urbanization and climate warming have contributed to global amphibian declines in recent decades, and amphibians are particularly vulnerable to warming because temperature influences their physiological processes across all life stages. Tadpole responses to warming in tropical climates are relatively understudied, and previous studies demonstrated species-specific responses to warming temperature. Warming ponds may quicken tadpole development and increase thermal tolerances, but increasing local temperatures push populations towards their physiological limits.
View Article and Find Full Text PDFPlant Physiol Biochem
September 2025
Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Comprehensive Utilization of Crops, Fuzhou, 350002, China.
Melon, a globally important horticultural crop, faces increasing continuous cropping obstacles (CCOs) due to cultivation intensification, with autotoxicity being a primary cause. Autotoxin accumulation severely impacts plant growth, reducing yield and quality. Exogenous silicon (Si) plays an important role in improving plant stress adaptation and is an environmentally friendly element with broad application prospects.
View Article and Find Full Text PDFVet Res Commun
September 2025
Department of Animal Industry Convergence, Kangwon National University, Chuncheon, 24341, Republic of Korea.
Global warming causes heat stress in livestock, impairing their health, welfare, and productivity. In bovines, chronic stress elevates cortisol levels; however, this response often goes undetected due to the lack of practical biomatrices for accurate assessment. Common biomatrices such as blood require repeated sampling that may affect measurement accuracy.
View Article and Find Full Text PDF