98%
921
2 minutes
20
Active matrix Gla protein (MGP), a potent inhibitor of calcification in large arteries, protects against macrovascular complications. Recent studies suggested that active MGP helps maintaining the integrity of the renal and myocardial microcirculation, but its role in preserving the retinal microcirculation remains unknown. In 935 randomly recruited Flemish participants (mean age, 40.9 years; 50.3% women), we measured plasma desphospho-uncarboxylated MGP (dp-ucMGP), a marker of poor vitamin K status using an ELISA-based assay at baseline (1996-2010) and retinal microvascular diameters using IVAN software (Vasculomatic ala Nicola, version 1.1) including the central retinal arteriolar (CRAE) and venular (CRVE) equivalent and the arteriole-to-venule ratio (AVR) at follow-up (2008-2015). CRAE (P = 0.005) and AVR (P = 0.080) at follow-up decreased across tertiles of the dp-ucMGP distribution. In unadjusted models, for a doubling of dp-ucMGP at baseline, CRAE and AVR at follow-up respectively decreased by 1.40 µm (95% confidence interval [CI], 0.32 to 2.48; P = 0.011) and 0.006 (CI, 0.001 to 0.011; P = 0.016). In multivariable-adjusted models accounting for sex, baseline characteristics and follow-up duration, these estimates were -1.03 µm (CI, -1.96 to -0.11; P = 0.028) and -0.007 (CI, -0.011 to -0.002; P = 0.007). Additional adjustment for changes from baseline to follow-up in major baseline characteristics yielded as estimates -0.91 µm (CI, -1.82 to -0.01; P = 0.048) and -0.006 (95% CI, -0.011 to -0.001; P = 0.014), respectively. Circulating inactive dp-ucMGP is a long-term predictor of smaller retinal arteriolar diameter in the general population. Our observations highlight the possibility that vitamin K supplementation might promote retinal health.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6180139 | PMC |
http://dx.doi.org/10.1038/s41598-018-33257-6 | DOI Listing |
Objectives: To investigate whether quantitative retinal markers, derived from multimodal retinal imaging, are associated with increased risk of mortality among individuals with proliferative diabetic retinopathy (PDR), the most severe form of diabetic retinopathy.
Design: Longitudinal retrospective cohort analysis.
Setting: This study was nested within the AlzEye cohort, which links longitudinal multimodal retinal imaging data routinely collected from a large tertiary ophthalmic institution in London, UK, with nationally held hospital admissions data across England.
Kidney360
September 2025
Division of Nephrology-Hypertension, Department of Medicine, University of California San Diego, San Diego California.
Background: CKD is strongly associated with cardiovascular disease (CVD), yet the etiology responsible for this link remains elusive. Novel blood and urine biomarkers reflecting kidney tubule dysfunction and injury may provide novel insights to mechanisms linking the kidney to CVD.
Methods: In 470 participants of the Multi-Ethnic Study of Atherosclerosis (MESA) without type 2 diabetes, CVD or CKD, we measured six plasma (kidney injury molecule-1 [KIM-1], monocyte chemoattractant protein-1 [MCP-1], soluble urokinase plasminogen activator receptor [suPAR], tumor necrosis factor receptor [TNFR] 1 and 2, and anti-chitinase-3-like protein 1 [YKL-40]) and six urinary (alpha 1 microglobulin [A-1M], epidermal growth factor [EGF], KIM-1, MCP-1, YKL-40 and uromodulin [UMOD]) kidney tubule health biomarkers.
Retina
August 2025
Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
Methods: Thirty subjects were recruited in the Guangdong Diabetic Retinopathy Multiple-omics Study (GD-RMOS). Adaptive optics scanning laser ophthalmoscopy (AOSLO) was adopted for image acquisition. An AI-based algorithm conducted quantitative analyses of photoreceptor morphology, including cone density, spacing, and regularity.
View Article and Find Full Text PDFMathematica (N Y)
June 2025
Department of Ophthalmology, Icahn School of Medicine at Mount Sinai Hospital, One Gustave L. Levy Place, Box 1183, New York, NY 10029, USA.
A theoretical model of the human retina is simulated using two distinct vascular network geometries to predict the impact of heterogeneity in vascular network structure on retinal tissue oxygenation. Each vascular network is modeled as a combined heterogeneous representation of retinal arterioles and compartmental representation of capillaries, small venules, and large venules. A Green's function method is used to model oxygen transport in the arterioles, and a Krogh cylinder model is used in the capillaries and venules.
View Article and Find Full Text PDFJAMA Ophthalmol
August 2025
Department of Ophthalmology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China.