Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Low-dose IL-2 represents an immunotherapy to selectively expand regulatory T cells (Tregs) to promote tolerance in patients with autoimmunity. In this article, we show that a fusion protein (FP) of mouse IL-2 and mouse IL-2Rα (CD25), joined by a noncleavable linker, has greater in vivo efficacy than rIL-2 at Treg expansion and control of autoimmunity. Biochemical and functional studies support a model in which IL-2 interacts with CD25 in the context of this FP in to form inactive head-to-tail dimers that slowly dissociate into an active monomer. In vitro, IL-2/CD25 has low sp. act. However, in vivo IL-2/CD25 is long lived to persistently and selectively stimulate Tregs. In female NOD mice, IL-2/CD25 administration increased Tregs within the pancreas and reduced the instance of spontaneous diabetes. Thus, IL-2/CD25 represents a distinct class of IL-2 FPs with the potential for clinical development for use in autoimmunity or other disorders of an overactive immune response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6200646PMC
http://dx.doi.org/10.4049/jimmunol.1800907DOI Listing

Publication Analysis

Top Keywords

fusion protein
8
regulatory cells
8
il-2/cd25
5
il-2
5
il-2/cd25 long-acting
4
long-acting fusion
4
protein promotes
4
promotes immune
4
immune tolerance
4
tolerance selectively
4

Similar Publications

Integrative profiling of lung cancer biomarkers EGFR, ALK, KRAS, and PD-1 with emphasis on nanomaterials-assisted immunomodulation and targeted therapy.

Front Immunol

September 2025

Department of Thoracic Surgery, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China.

Background: Lung cancer remains the leading cause of cancer-related mortality globally, primarily due to late-stage diagnosis, molecular heterogeneity, and therapy resistance. Key biomarkers such as EGFR, ALK, KRAS, and PD-1 have revolutionized precision oncology; however, comprehensive structural and clinical validation of these targets is crucial to enhance therapeutic efficacy.

Methods: Protein sequences for EGFR, ALK, KRAS, and PD-1 were retrieved from UniProt and modeled using SWISS-MODEL to generate high-confidence 3D structures.

View Article and Find Full Text PDF

Mitochondrial dysfunction is one of the primary cellular conditions involved in developing Huntington's disease (HD) pathophysiology. The accumulation of mutant huntingtin protein with abnormal PolyQ repeats resulted in the death of striatal neurons with enhanced mitochondrial fragmentation. In search of neuroprotective molecules against HD conditions, we synthesized a set of isoxazole-based small molecules to screen their suitability as beneficial chemicals improving mitochondrial health.

View Article and Find Full Text PDF

Chronic myeloid leukemia (CML), a myeloproliferative neoplasm, is characterized by the fusion gene, which results in constitutive tyrosine kinase activity. While tyrosine kinase inhibitors (TKIs) have significantly improved CML outcomes, resistance and the persistence of leukemic stem cells remain major clinical challenges. Curcumin, a natural polyphenol derived from , has demonstrated potential anticancer properties.

View Article and Find Full Text PDF

Acute lung injury (ALI) represents a critical clinical challenge characterized by uncontrolled pulmonary inflammation and disrupted tissue homeostasis, often leading to severe respiratory dysfunction. Current pharmacological interventions and vaccines have demonstrated suboptimal clinical outcomes in modulating disease progression, highlighting the urgent need for innovative therapeutic strategies. A key pathophysiological feature of ALI involves dysregulation of redox homeostasis and excessive pulmonary inflammation.

View Article and Find Full Text PDF

Hybrid breeding based on male sterility requires the removal of male parents, which is time- and labor-intensive; however, the use of female sterile male parent can solve this problem. In the offspring of distant hybridization between Brassica oleracea and Brassica napus, we obtained a mutant, 5GH12-279, which not only fails to generate gynoecium (thereby causing female sterility) but also has serrated leaves that could be used as a phenotypic marker in seedling screening. Genetic analysis revealed that this trait was controlled by a single dominant gene.

View Article and Find Full Text PDF