98%
921
2 minutes
20
The preeminent treatments for neurodegenerative disease are often unavailable due to the poor accessibility of therapeutic drugs. Moreover, the blood-brain barrier (BBB) effectively blocks the transfer of cells, particles and large molecules, ie, drugs, across the brain. The most important challenge in the treatment of neurodegenerative diseases is the development of targeted drug delivery system. Theranostic strategies are known to combine therapeutic and diagnostic capabilities together. The aim of this review was to record the response to treatment and thereby improve drug safety. Nanotechnology offers a platform for designing and developing theranostic agents that can be used as an efficient nano-carrier system. This is achieved by the manipulation of some of the properties of nanoparticles (NPs), thereby enabling the attachment of suitable drugs onto their surface. The results provide revolutionary treatments by stimulation and thus interaction with targeted sites to promote physiological response with minimum side effects. This review is a brief discussion of the administration of drugs across the brain and the advantages of using NPs as an effective theranostic platform in the treatment of Alzheimer's, Parkinson's, epilepsy and Huntington's disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6154717 | PMC |
http://dx.doi.org/10.2147/IJN.S149022 | DOI Listing |
Brain Behav
September 2025
Department of Neurology, NHO Nishiniigata Chuo Hospital, Niigata, Japan.
Background: Y69H (p.Y89H) variant hereditary transthyretin (ATTRv) amyloidosis causes meningeal amyloidosis, with mutant TTR deposits localized to the leptomeninges and vitreous body.
Methods: The effect of tafamidis meglumine on neurological disorders, such as the frequency of transient focal neurological episodes (TFNEs), magnetic resonance imaging (MRI) findings, and TTR levels in cerebrospinal fluid, was investigated in two patients diagnosed with Y69H ATTRv mutation.
Neurobiol Dis
September 2025
Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, USA; Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, USA. Electronic address:
Temporal lobe epilepsy is associated with aberrant neurogenesis and ectopic migration of adult-born granule cells (abGCs), yet the molecular mechanisms driving these changes remain poorly defined. Using a pilocarpine-induced mouse model of temporal lobe epilepsy and chemogenetic silencing of abGCs via Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), we previously demonstrated that abGC inhibition reduces both ectopic migration and seizure susceptibility. To identify underlying molecular regulators, we performed RNA sequencing of FACS-isolated abGCs and identified Rrm2 and Timp3 as top candidate genes modulated by seizure activity and neuronal silencing.
View Article and Find Full Text PDFAgeing Res Rev
September 2025
School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China. Electronic address:
The vast microbial community residing in the gut is known as the gut microbiota (GM). Alterations in the compositional equilibrium of the GM, a phenomenon termed GM dysbiosis, have been increasingly associated with the pathogenesis of various diseases, particularly neuropsychiatric disorders. The microbiota-gut-brain axis (MGBA) serves as a bidirectional communication system that connects the gut to the brain.
View Article and Find Full Text PDFNucl Med Biol
September 2025
The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA. Electronic address:
Background: Positron-emission tomography (PET) imaging of the complement system could advance understanding of the innate immune system in central nervous system (CNS) diseases and development of new drugs. The goal of this study was to develop a PET radiotracer targeting the C3a receptor (C3aR) of the complement system.
Methods: C3aR radiotracer [F]1 was synthesized in one step.
Bioinformatics
September 2025
The Second Affiliated Hospital and School of Public Health, Zhejiang University School of Medicine, Hangzhou, China.
Motivation: Drug repositioning presents a streamlined and cost-efficient way to expand the range of therapeutic possibilities. Drugs with human genetic evidence are more likely to advance successfully through clinical trials towards FDA approval. Single gene-based drug repositioning methods have been implemented, but approaches leveraging a broad spectrum of molecular signatures remain underexplored.
View Article and Find Full Text PDF