98%
921
2 minutes
20
Plants respond to drought stress through the ABA dependent and independent pathways, which in turn modulate transcriptional regulatory hubs. Here, we employed Illumina RNA-Seq to analyze a total of 18 cDNA libraries from leaves, sap, and roots of papaya plants under drought stress. Reference and de novo transcriptomic analyses identified 8,549 and 6,089 drought-responsive genes and unigenes, respectively. Core sets of 6 and 34 genes were simultaneously up- or down-regulated, respectively, in all stressed samples. Moreover, GO enrichment analysis revealed that under moderate drought stress, processes related to cell cycle and DNA repair were up-regulated in leaves and sap; while responses to abiotic stress, hormone signaling, sucrose metabolism, and suberin biosynthesis were up-regulated in roots. Under severe drought stress, biological processes related to abiotic stress, hormone signaling, and oxidation-reduction were up-regulated in all tissues. Moreover, similar biological processes were commonly down-regulated in all stressed samples. Furthermore, co-expression network analysis revealed three and eight transcriptionally regulated modules in leaves and roots, respectively. Seventeen stress-related TFs were identified, potentially serving as main regulatory hubs in leaves and roots. Our findings provide insight into the molecular responses of papaya plant to drought, which could contribute to the improvement of this important tropical crop.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6162326 | PMC |
http://dx.doi.org/10.1038/s41598-018-32904-2 | DOI Listing |
BMC Plant Biol
September 2025
Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 84156 83111, Iran.
BMC Plant Biol
September 2025
Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia.
Drought stress affects plant growth and production. To cope with drought stress, plants induced physiological and metabolic changes, serving as a protective approach under drought-stress conditions. The response to drought can vary based on plant type (C3 vs.
View Article and Find Full Text PDFTheor Appl Genet
September 2025
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.
The German Federal Ex Situ Genebank for Agricultural and Horticultural Crops (IPK) harbours over 3000 pea plant genetic resources (PGRs), backed up by corresponding information across 16 key agronomic and economical traits. The unbalanced structure and inconsistent format of this historical data has precluded effective leverage of genebank accessions, despite the opportunities contained in its genetic diversity. Therefore, a three-step statistical approach founded in linear mixed models was implemented to enable a rigorous and targeted data curation.
View Article and Find Full Text PDFPhytopathology
September 2025
College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
Fusarium crown rot (FCR) is a soilborne disease that occurs in many cereal-growing regions in the world. An association between FCR development and drought stress has long been known. The FCR symptoms are pronounced under drought stress in both fields and controlled environments.
View Article and Find Full Text PDFBiotechnol Bioeng
September 2025
Department of Biosystems Engineering, Auburn University, Auburn, Alabama, USA.
Ensuring sufficient crop yields in an era of rapid population growth and limited arable land requires innovative strategies to enhance plant resilience and sustain, or even improve, growth and productivity despite environmental stress. Besides symbiotic nitrogen fixation, rhizobia may play a central role in sustainable agriculture by alleviating the detrimental effects of ethylene-a key stress hormone in plants-especially under conditions like drought through the deamination of 1-aminocyclopropane-1-carboxylic acid (ACC). In this study, we focused on genetically engineering a new Bradyrhizobium sp.
View Article and Find Full Text PDF