Porphyrin Dyes for Nonlinear Optical Imaging of Live Cells.

iScience

Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, UK. Electronic address:

Published: June 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Second harmonic generation (SHG)-based probes are useful for nonlinear optical imaging of biological structures, such as the plasma membrane. Several amphiphilic porphyrin-based dyes with high SHG coefficients have been synthesized with different hydrophilic head groups, and their cellular targeting has been studied. The probes with cationic head groups localize better at the plasma membrane than the neutral probes with zwitterionic or non-charged ethylene glycol-based head groups. Porphyrin dyes with only dications as hydrophilic head groups localize inside HEK293T cells to give SHG, whereas tricationic dyes localize robustly at the plasma membrane of cells, including neurons, in vitro and ex vivo. The copper(II) complex of the tricationic dye with negligible fluorescence quantum yield works as an SHG-only dye. The free-base tricationic dye has been demonstrated for two-photon fluorescence and SHG-based multimodal imaging. This study demonstrates the importance of a balance between the hydrophobicity and hydrophilicity of amphiphilic dyes for effective plasma membrane localization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6147020PMC
http://dx.doi.org/10.1016/j.isci.2018.05.015DOI Listing

Publication Analysis

Top Keywords

plasma membrane
16
head groups
16
porphyrin dyes
8
nonlinear optical
8
optical imaging
8
hydrophilic head
8
groups localize
8
tricationic dye
8
dyes nonlinear
4
imaging live
4

Similar Publications

Colorectal cancer ranks among the most prevalent and lethal malignant tumors globally. Historically, the incidence of colorectal cancer in China has been lower than that in developed European and American countries; however, recent trends indicate a rising incidence due to changes in dietary patterns and lifestyle. Lipids serve critical roles in human physiology, such as energy provision, cell membrane formation, signaling molecule function, and hormone synthesis.

View Article and Find Full Text PDF

Exploring the antiangiogenic effects of Phospholipases A from Bothrops diporus venom.

Cell Tissue Res

September 2025

Grupo de Investigaciones Biológicas y Moleculares (GIByM), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA NEA), Universidad Nacional del Nordeste (UNNE)-CONICET, Corrientes, Argentina.

Angiogenesis, the formation of new blood vessels from pre-existing vasculature, is a crucial process in both physiological and pathological contexts, including cancer. Phospholipases A (PLAs), enzymes found in snake venoms, have attracted attention due to their potential antiangiogenic properties. In this study, we explored the antiangiogenic effects of PLA isoforms isolated from Bothrops diporus venom using a combination of in vivo and ex vivo models.

View Article and Find Full Text PDF

Plasma membrane maize Gγ protein MGG4 positively regulates seed size mainly through influencing kernel width.

Plant Cell Rep

September 2025

Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.

Plasma membrane Gγ protein MGG4, the candidate for maize yield QTL, positively regulates seed size mainly through affecting kernel width.

View Article and Find Full Text PDF

Lysosome-dependent cell death (LDCD) is a regulated form of cell death initiated by increased lysosomal membrane permeability, leading to the cytoplasmic release of lysosomal enzymes and subsequent cellular damage. Molecular mechanisms controlling LDCD include lysosomal membrane instability and lysosomal enzyme release, which together lead to cell damage. A more profound comprehension of these underlying mechanisms may reveal new therapeutic targets for diseases associated with lysosomal dysfunction.

View Article and Find Full Text PDF

 Keloid scarring and Metabolic Syndrome (MS) are distinct conditions marked by chronic inflammation and tissue dysregulation, suggesting shared pathogenic mechanisms. Identifying common regulatory genes could unveil novel therapeutic targets. Methods.

View Article and Find Full Text PDF