98%
921
2 minutes
20
Background: To investigate the influence of nocturnal ambient light on visual function and ocular fatigue.
Methods: Sixty healthy subjects (30 men and 30 women) aged 19 through 29 years with no history of ocular disease were recruited. All subjects spent 3 consecutive nights in the sleep laboratory. During the first and second nights, the subjects were not exposed to light during sleep, but during the third night, they were exposed to ambient light, measuring 5 or 10 lux at the eye level, which was randomly allocated with 30 subjects each. The visual function and ocular fatigue were assessed at 7 a.m. on the 3rd and 4th mornings, using best-corrected visual acuity, refractive error, conjunctival hyperemia, tear break-up time, maximal blinking interval, ocular surface temperature, and subjective symptoms reported on a questionnaire.
Results: Three men and three women subjects failed to complete the study (4 in the 5 lux; 2 from the 10 lux). For the entire 54 subjects, tear break-up time and maximal blinking interval decreased ( = 0.015; 0.010, respectively), and nasal and temporal conjunctival hyperemia increased significantly after sleep under any ambient light ( < 0.001; 0.021, respectively). Eye tiredness and soreness also increased ( = 0.004; 0.024, respectively). After sleep under 5 lux light, only nasal conjunctival hyperemia increased significantly ( = 0.008). After sleep under 10 lux light, nasal and temporal conjunctival hyperemia, eye tiredness, soreness, difficulty in focusing, and ocular discomfort increased significantly ( < 0.05).
Conclusion: Nocturnal ambient light exposure increases ocular fatigue. Avoiding ambient light during sleep could be recommended to prevent ocular fatigue.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6137029 | PMC |
http://dx.doi.org/10.3346/jkms.2018.33.e248 | DOI Listing |
Chem Sci
August 2025
State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 Jianshe Road Xinxiang 453007 China +86
The construction of polymer-based photoactivated room-temperature phosphorescence systems remains a prominent research focus, yet the development of ultrafast activated systems under ambient conditions continues to pose a challenge. In this study, cyclized phenothiazine derivatives bearing diverse substituents are synthesized and incorporated into an amorphous polyvinyl alcohol (PVA) matrix, resulting in significantly enhanced dynamic photoactivation characteristics compared with those of their pristine monomeric counterparts. Under ambient conditions and 2 s irradiation, the lifetime and quantum yield of C[4]PTZ-OH@PVA increase by factors of 1.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou 215123, China. Electronic address:
The aldehyde addition reaction is recognized as a key pathway in the formation of haloacetamides (HAMs) in drinking water. In particular, the reaction between monochloramine and chloroaldehydes has been reported to proceed rapidly. However, the measured concentrations of haloaldehydes (HALs) in chloraminated water are often much higher than those of HAMs.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA.
α-Lipoic acid (LA) has recently emerged as an attractive, inexpensive monomer for synthesizing degradable polymers via ring-opening of its 1,2-dithiolane, introducing easily cleavable disulfide linkages into polymer backbones. Reversible addition-fragmentation chain transfer (RAFT) copolymerization with vinyl monomers enables access to degradable poly(disulfide)s with controlled molecular weights. However, conventional thermal RAFT methods suffer from oxygen sensitivity, limited LA incorporation (<40 mol%), and modest degrees of polymerization (DP < 300).
View Article and Find Full Text PDFCarbohydr Res
September 2025
Area for Molecular Function, Division of Material Science, Graduate School of Science and Engineering, Saitama University, Sakura, Saitama, 338-8570, Japan; Medical Innovation Research Unit (MiU), Advanced Institute of Innovative Technology (AIIT), Saitama University, Sakura, Saitama, 338-8570, Japa
Multivalent interactions between lectins and glycans are crucial for biological recognition; however, predicting functional inhibition based on binding affinity remains challenging. Herein, we investigated a series of structurally defined N-acetylglucosamine (GlcNAc)-functionalized dendrimers (1a-1c and 2a-2c) to examine how spatial orientation and temperature influenced the inhibition of wheat germ agglutinin (WGA). Using enzyme-linked lectin assays (ELLAs), we observed biphasic inhibition profiles for all the dendrimers, characterized by an initial enhancement of WGA binding at low concentrations, followed by effective inhibition at higher concentrations.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Department of Food Science and Agricultural Chemistry, McGill University, Quebec H9X 3V9, Canada.
Passive daytime radiative cooling (PDRC) offers a sustainable solution to global energy challenges by dissipating heat without energy input. However, conventional PDRC materials face trade-offs between biodegradability, color integration, optical transparency, and mechanical robustness. Herein, a biomimetic, structurally colored PDRC film fabricated via evaporation-induced self-assembly of cellulose nanocrystals (CNCs), betaine, and polyvinyl alcohol was developed.
View Article and Find Full Text PDF