98%
921
2 minutes
20
The solid electrolyte interphase (SEI), which is a surface layer formed on the negative electrode, plays an important role in inhibiting the reductive decomposition of the electrolyte solution in a lithium-ion battery. However, it has not been understood well which components are important for the SEI to prevent the electrolyte decomposition. Lithium fluoride (LiF), as an artificial SEI, was formed on an amorphous-Si thin film by physical vapor deposition. Changes in the surface morphology of the Si electrode with potential sweeping were investigated using in situ atomic force microscopy (AFM). Although large amounts of non-uniform surface deposits that originate from electrolyte decomposition emerged on the bare Si-film electrode during the first lithiation process, few surface deposits were observed on the LiF-coated Si-film electrode even after two cycles in an ethylene carbonate-based electrolyte solution without additives. It is clear that LiF is a required SEI component that inhibits electrolyte decomposition on Si negative electrodes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8nr05354e | DOI Listing |
J Phys Chem Lett
September 2025
Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
Ether-based electrolytes are widely acknowledged for their potential to form stable solid electrolyte interfaces (SEIs) for stable anode performance. However, conventional ether-based electrolytes have shown a tendency for cation-solvent co-intercalation phenomena on graphite electrodes, resulting in lower capacity and higher voltage platforms compared to those of neat cation insertion in ester-based electrolytes. In response, we propose the development of weakly solvating ether solvents to weaken the interaction between cations and solvents, thereby suppressing co-intercalation behavior.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Materials Science and Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
LiNiMnO (LNMO) is a promising material for the cathode of lithium-ion batteries (LiBs); however, its high operating voltage causes stability issues when used with carbonate battery electrolytes. Ionic liquids are a viable alternative to conventional carbonate solvents due to their thermal stability and electrochemical window. This work reports the performance of LNMO/Li half cells with an ionic liquid electrolyte (ILE) composed of 0.
View Article and Find Full Text PDFACS Omega
September 2025
Department of Chemical Engineering, Hongik University, 94 Wausan-ro, Mapo-gu, Seoul 04066, Republic of Korea.
Commercial lithium-ion batteries using organic solvent-based liquid electrolytes (LEs) face safety issues, including risks of fire and explosion. As a safer alternative, solid-state electrolytes are being extensively explored to replace these organic solvent-based LEs. Among various solid electrolyte options, polymer electrolytes offer advantages such as flexibility and ease of processing.
View Article and Find Full Text PDFChem Sci
August 2025
Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Department of Physics, College of Physics & Optoelectronic Engineering, Jinan University Guangzhou 510632
Sodium (Na) metal batteries (SMBs) are regarded as some of the most promising next-generation energy storage systems due to their high energy density. However, their practical application is severely hindered by interfacial instabilities at both the anode and cathode, which result in rapid capacity degradation during cycling. Here, we proposed a bidirectional interfacial regulation strategy that simultaneously stabilizes both electrode interfaces.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Physics and Electronics, Hunan Key Laboratory of Two-Dimensional Materials, Chongqing Research Institute, Hunan University, Changsha, 410082, P.R. China.
Controlling the electrode-electrolyte interfacial behavior is crucial for achieving a high-quality solid electrolyte interphase (SEI) and ensuring sustainable battery performance. Here, we propose a selective catalysis strategy to stabilize antimony atom-cluster (Sb) anode/electrolyte interface for robust potassium-ion batteries (PIBs). Specifically, the electrode featuring Sb in porous carbon (Sb/PC) as "electrocatalyst" unduly catalyzes the reduction of the dimethyl ether-based electrolyte, resulting in loose SEI layer and rapid capacity decay.
View Article and Find Full Text PDF