98%
921
2 minutes
20
Patterns of nucleotide polymorphism within populations of suggest that insecticides have been the selective agents driving the strongest recent bouts of positive selection. However, there is a need to explicitly link selective sweeps to the particular insecticide phenotypes that could plausibly account for the drastic selective responses that are observed in these non-target insects. Here, we screen the Drosophila Genetic Reference Panel with two common insecticides; malathion (an organophosphate) and permethrin (a pyrethroid). Genome-wide association studies map survival on malathion to two of the largest sweeps in the genome; and Malathion survivorship also correlates with lines which have high levels of , and transcript abundance. Permethrin phenotypes map to the largest cluster of P450 genes in the Drosophila genome, however in contrast to a selective sweep driven by insecticide use, the derived allele seems to be associated with susceptibility. These results underscore previous findings that highlight the importance of structural variation to insecticide phenotypes: exhibits copy number variation and transposable element insertions, is tandemly duplicated, the loci are associated with a transposable element insertion, and a deletion is associated with susceptibility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6222580 | PMC |
http://dx.doi.org/10.1534/g3.118.200619 | DOI Listing |
Fungal Biol
October 2025
Engineering Bioprocess and Biotechnology Post-Graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Parana, Curitiba, Paraná, Brazil. Electronic address:
Lichens exemplify a unique symbiotic relationship between fungi and algae or cyanobacteria, where fungi (mycobionts) provide structural support, while algae or cyanobacteria (photobionts) provide nutrients. Recent discoveries in the order Chaetothyriales have led to the description of several lichenicolous species, underscoring an intricate relationship of some black yeast-like fungi with lichens. The present study aims to investigate public metagenomic data of lichens available in the SRA database, covering a total of 2888 samples.
View Article and Find Full Text PDFMol Hortic
September 2025
Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, 28 Gangwan Road, Zhengzhou, 450009, China.
Fruit domestication has long aimed to reduce bitterness, yet the molecular mechanisms behind this trait remain only partially understood. Wild apples and pears naturally accumulate high levels of bitter proanthocyanidins (PAs), also known as condensed tannins. In this study, a convergent domestication process was identified in both fruits, involving the selection of weak alleles of MYB transcription factors that regulate PA biosynthesis.
View Article and Find Full Text PDFbioRxiv
August 2025
Department of Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL, USA.
Identifying genomic regions shaped by natural selection is a central goal in evolutionary genomics. Existing machine learning methods for this task are typically trained using simulated genomic data labeled according to specific evolutionary scenarios. While effective in controlled settings, these models are limited by their reliance on explicit class labels.
View Article and Find Full Text PDFFront Genet
August 2025
Sustainable Perennial Crops Laboratory, United States Department of Agriculture, Agriculture Research Service, Beltsville, MD, United States.
Climate change poses significant challenges to global coffee production, particularly for Arabica coffee, which is constrained by a narrow temperature tolerance and a limited genetic pool. This study explores , a species native to West Africa, as a potential alternative to Arabica due to its adaptability to higher temperatures and high-quality flavor profile. Using genome-wide association studies (GWAS), we investigated the genetic basis of phenotypic diversity within accessions from Sierra Leone, focusing on traits related to growth habit, fruit and seed morphology, and plant structural characteristics.
View Article and Find Full Text PDFPest Manag Sci
September 2025
Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
Background: The white-backed planthopper (WBPH), Sogatella furcifera (Horváth) (Homoptera: Delphacidae), is a highly migratory insect pest that poses a significant threat to rice production in East and Southeast Asia. Although considerable advances have been made in understanding its migration sources and dispersal patterns with the advent of newer molecular tools, genomic-level insights into these processes, as well as its environmental adaptation mechanisms, remain limited.
Results: This study conducted whole-genome resequencing of 289 WBPH individuals from China and Southeast Asian countries, including Myanmar, Laos and Vietnam, to investigate population structure, gene flow and selective signals.