Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rechargeable Li-ion batteries (LIBs) are currently the dominant power source for electric vehicles and portable electronic devices, and for small-scale stationary energy storage. However, one bottleneck of the anode materials for LIBs is the poor cycling performance caused by the fact that the anodes cannot maintain their integrity over several charge-discharge cycles. In this article, a zinc-based two-dimensional coordination polymer [Zn(bcbpy)(PTA)(HO)] (Zn-BCP) has been synthesized (Hbcbpy·2Cl = 1,1'-bis(3-carboxylatobenzyl)-(4,4'-bipyridinium) dichloride, PTA = terephthalic acid), which was characterized by single-crystal X-ray diffraction, powder X-ray diffraction, infrared spectroscopy and thermogravimetric analysis. Because of the presence of electron-deficient bipyridinium moieties, Zn-BCP can easily undergo photoinduced electron transfer and eye-detectable photochromic behavior. Moreover, its luminescence can be switched by UV-Vis light irradiation. When Zn-BCP acts as an anode material for lithium ion batteries, it can deliver a high reversible capacity of 386.2 mA h g at 100 mA g after 100 cycles and a high capacity retention of 93.1% after 1000 cycles at a high rate of 200 mA g, which is supposed to be due to the flexible structure characteristic of the proposed anode. The high capacity may be mainly ascribed to rich insertion sites arising from the aromatic ligands and all of the aromatic ligands are taking part in lithium storage.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8dt02930jDOI Listing

Publication Analysis

Top Keywords

high capacity
12
coordination polymer
8
anode high
8
x-ray diffraction
8
cycles high
8
aromatic ligands
8
high
5
photochromic zinc-based
4
zinc-based coordination
4
polymer li-ion
4

Similar Publications

The development of anode materials for lithium-ion batteries must meet the demands for high safety, high energy density, and fast-charging performance. TiNbO is notable for its high theoretical specific capacity, low structural strain, and exceptional fast-charging capability, attributed to its Wadsley-Roth crystal structure. However, its inherently poor conductivity has hindered its practical application.

View Article and Find Full Text PDF

Objectives: to analyze the relationship between self-care and pharmacotherapy complexity in individuals with rheumatoid arthritis.

Methods: this cross-sectional study was conducted at a teaching hospital in the Central-West region of Brazil from October to December 2023. Individuals with rheumatoid arthritis undergoing treatment for at least three months were included.

View Article and Find Full Text PDF

We investigate the quasiparticles of a single nodal ring semimetal SrAs_{3} through axis-resolved magneto-optical measurements. We observe three types of Landau levels scaling as ϵ∼sqrt[B], ϵ∼B^{2/3}, and ϵ∼B that correspond to Dirac, semi-Dirac, and classical fermions, respectively. Through theoretical analysis, we identify the distinct origins of these three types of fermions present within the nodal ring.

View Article and Find Full Text PDF

Magnetic heat capacity measurements of a high-quality single crystal of the dipole-octupole pyrochlore Ce_{2}Hf_{2}O_{7} down to a temperature of T=0.02  K are reported. These show a two-peaked structure, with a Schottky-like peak at T_{1}∼0.

View Article and Find Full Text PDF

Narrow electrochemical windows and high reactivity of aqueous solutions remain critical bottlenecks for the practical application of aqueous batteries. However, the mechanisms for tuning microscopic reactivity of HO molecules in aqueous electrolytes remain elusive. This study employs six ether molecules with distinct structures and solvation powers to regulate the microstructure of aqueous solutions.

View Article and Find Full Text PDF