Temperature Dependence of Chlorophyll Triplet Quenching in Two Photosynthetic Light-Harvesting Complexes from Higher Plants and Dinoflagellates.

J Phys Chem B

Department of Chemical Physics and Optics, Faculty of Mathematics and Physics , Charles University, Ke Karlovu 3 , 121 16 Prague 2 , Czech Republic.

Published: September 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Chlorophyll (Chl) triplet states generated in photosynthetic light-harvesting complexes (LHCs) can be quenched by carotenoids to prevent the formation of reactive singlet oxygen. Although this quenching occurs with an efficiency close to 100% at physiological temperatures, the Chl triplets are often observed at low temperatures. This might be due to the intrinsic temperature dependence of the Dexter mechanism of excitation energy transfer, which governs triplet quenching, or by temperature-induced conformational changes. Here, we report about the temperature dependence of Chl triplet quenching in two LHCs. We show that both the effects contribute significantly. In LHC II of higher plants, the core Chls are quenched with a high efficiency independent of temperature. A different subpopulation of Chls, which increases with lowering temperature, is not quenched at all. This is probably caused by the conformational changes which detach these Chls from the energy-transfer chain. In a membrane-intrinsic LHC of dinoflagellates, similarly two subpopulations of Chls were observed. In addition, another part of Chl triplets is quenched by carotenoids with a rate which decreases with temperature. This allowed us to study the temperature dependence of Dexter energy transfer. Finally, a part of Chls was quenched by triplet-triplet annihilation, a phenomenon which was not observed for LHCs before.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.8b06751DOI Listing

Publication Analysis

Top Keywords

temperature dependence
16
triplet quenching
12
photosynthetic light-harvesting
8
light-harvesting complexes
8
higher plants
8
chl triplet
8
quenched carotenoids
8
chl triplets
8
dependence dexter
8
energy transfer
8

Similar Publications

Titanium dioxide nanoparticles as a promising tool for efficient separation of trace DNA via phosphate-mediated desorption.

Mikrochim Acta

September 2025

Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 Changsheng West Road, Hengyang, 421001, Hunan, China.

We systematically evaluated the DNA adsorption and desorption efficiencies of several nanoparticles. Among them, titanium dioxide (TiO₂) nanoparticles (NPs), aluminum oxide (Al₂O₃) NPs, and zinc oxide (ZnO) NPs exhibited strong DNA-binding capacities under mild conditions. However, phosphate-mediated DNA displacement efficiencies varied considerably, with only TiO₂ NPs showing consistently superior performance.

View Article and Find Full Text PDF

The thermal grill elicits central sensitization.

Pain

August 2025

Centre for Multimodal Sensorimotor and Pain Research, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.

The thermal grill, in which innocuous warm and cool stimuli are interlaced, can produce a paradoxical burning pain sensation-the thermal grill illusion (TGI). Although the mechanisms underlying TGI remain unclear, prominent theories point to spinal dorsal horn integration of innocuous thermal inputs to elicit pain. It remains unknown whether the TGI activates peripheral nociceptors, or solely thermosensitive afferents that are integrated within the spinal cord to give rise to a painful experience.

View Article and Find Full Text PDF

The COVID-19 pandemic remains a global health crisis, with successive SARS-CoV-2 variants exhibiting enhanced transmissibility and immune evasion. Notably, the Omicron variant harbors extensive mutations in the spike protein's receptor-binding domain (RBD), altering viral fitness. While temperature is a critical environmental factor modulating viral stability and transmission, its molecular-level effects on variant-specific RBD-human angiotensin-converting enzyme 2 (hACE2) interactions remain underexplored.

View Article and Find Full Text PDF

Volatile organic compounds (VOCs) are carbon-based chemicals characterized by high vapor pressure and low boiling points under standard temperature and pressure conditions. VOCs are categorized as exogenous or endogenous, depending on their source. Endogenous VOCs are metabolic byproducts eliminated via respiration.

View Article and Find Full Text PDF

Many ant species show dramatic shifts in behaviour when infected with parasites, but the molecular basis of these behavioural changes is not well understood. An example is the wood ant, Formica aserva, which serves as an intermediate host for the lancet liver fluke, Dicrocoelium dendriticum. Infected ants leave their nests during the cool hours of the day, ascend a flower and then attach themselves to a petal with their mandibles.

View Article and Find Full Text PDF