Sidestep-induced neuromuscular miswiring causes severe locomotion defects in larvae.

Development

Heinrich Heine University Düsseldorf, Functional Cell Morphology Lab, Building 26-12-00, Universitaetsstrasse 1, 40225 Düsseldorf, Germany

Published: August 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mutations in motor axon guidance molecules cause aberrant projection patterns of motor nerves. As most studies in have analysed these molecules in fixed embryos, the consequences for larval locomotion are entirely unexplored Here, we took advantage of ()-mutant larvae that display severe locomotion defects because of irreparable innervation errors. Mutations in affected all motor nerve branches and all body wall regions. Innervation defects were non-stereotypical, showing unique innervation patterns in each hemisegment. Premature activation of Side in muscle precursors abrogated dorsal migration of motor nerves, resulting in larvae with a complete loss of neuromuscular junctions on dorsal-most muscles. High-speed videography showed that these larvae failed to maintain substrate contact and inappropriately raised both head and tail segments above the substrate, resulting in unique 'arching' and 'lifting' phenotypes. These results show that guidance errors in mutants are maintained throughout larval life and are asymmetrical with respect to the bilateral body axis. Together with similar findings in mice, this study also suggests that miswiring could be an underlying cause of inherited movement disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1242/dev.163279DOI Listing

Publication Analysis

Top Keywords

severe locomotion
8
locomotion defects
8
mutations motor
8
motor nerves
8
sidestep-induced neuromuscular
4
neuromuscular miswiring
4
miswiring severe
4
larvae
4
defects larvae
4
larvae mutations
4

Similar Publications

Radiation dermatitis is a common side effect of radiotherapy, affecting up to 95% of cancer patients receiving radiation therapy and often leading to skin damage, inflammation, and ulceration. The pathogenesis of radiation dermatitis involves complex mechanisms, such as the production of reactive oxygen species (ROS) and sustained inflammatory responses. Current treatments, including topical steroids, moisturisers, and non-steroidal anti-inflammatory drugs (NSAIDs), often provide limited efficacy, primarily addressing symptoms rather than the underlying pathophysiological processes.

View Article and Find Full Text PDF

Infantile Epileptic Spasms Syndrome (IESS), also referred to as West syndrome, is a severe epileptic disorder that emerges during early childhood. It is marked by characteristic epileptic spasms, developmental stagnation or regression, and a distinctive electroencephalogram (EEG) pattern known as hypsarrhythmia. To better understand the underlying mechanisms of IESS, various genetic and chemically induced animal models have been developed.

View Article and Find Full Text PDF

Lameness in dairy cattle is a prevalent issue that significantly impacts both animal welfare and farm productivity. Traditional lameness detection methods often rely on subjective visual assessment, focusing on changes in locomotion and back curvature. However, these methods can lack consistency and accuracy, particularly for early-stage detection.

View Article and Find Full Text PDF

β-Asaronol, the Neuroactive Component of : Mitigating Seizures with Minimal Developmental Risk in Dravet Syndrome.

ACS Chem Neurosci

September 2025

Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi'an 710069, P.R. China.

Developmental epileptic encephalopathies (DEEs), including Dravet syndrome (DS), require antiseizure medications (ASMs) that balance efficacy with developmental safety. There is an urgent clinical need for novel therapeutic agents that combine potent anticonvulsant activity with developmental safety. β-Asarone, an active constituent of plants, has demonstrated antiepileptic potential, but its toxicities severely limit clinical application.

View Article and Find Full Text PDF

Within a year after a spinal cord injury (SCI), 75% of individuals develop spasticity. While normal movement relies on the ability to adjust reflexes appropriately, and on reciprocal inhibition of antagonistic muscles, spastic individuals display hyperactive spinal reflexes and involuntary muscle co-contractions. Current anti-spastic medications can suppress uncontrolled movements, but by acting on GABAergic signalling, these medications lead to severe side-effects and weakened muscle force, making them incompatible with activity-based therapies.

View Article and Find Full Text PDF