Foundation species patch configuration mediates salt marsh biodiversity, stability and multifunctionality.

Ecol Lett

Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure and Environment, University of Florida, Gainesville, FL, 32611, USA.

Published: November 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Foundation species enhance biodiversity and multifunctionality across many systems; however, whether foundation species patch configuration mediates their ecological effects is unknown. In a 6-month field experiment, we test which attributes of foundation species patch configuration - i.e. patch size, total patch area, perimeter, area-perimeter ratio, or connectivity - control biodiversity, stability and multifunctionality by adding a standardised density of mussel foundation species in patches of 1, 5, 10, 30, 60, 90 or 180 individuals to a southeastern US salt marsh. Over 67% of response variables increased with clustering of mussels, responses that were driven by increases in area-perimeter ratio (33%), decreases in perimeter (29%), or increases in patch size (5%), suggesting sensitivity to external stressors and/or dependence on foundation species-derived niche availability and segregation. Thus, mussel configuration - by controlling the relative distribution of multidimensional patch interior and edge niche space - critically modulates this foundation species' effects on ecosystem structure, stability and function.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ele.13146DOI Listing

Publication Analysis

Top Keywords

foundation species
20
species patch
12
patch configuration
12
configuration mediates
8
salt marsh
8
biodiversity stability
8
stability multifunctionality
8
patch size
8
area-perimeter ratio
8
foundation
7

Similar Publications

Morphological Characterization of the Sensilla from the Antennal Flagella, Maxillary Palps, and Aculei, and Electroantennogram Responses of Anastrepha obliqua (Diptera: Tephritidae) to Host Volatiles.

Neotrop Entomol

September 2025

Grupo de Ecología Química, Departamento de Ecología de Artrópodos y Manejo de Plagas, El Colegio de La Frontera Sur, Tapachula, , Chiapas, Mexico.

Insect chemoreception is essential for locating food, selecting oviposition sites, and detecting infochemicals. In tephritid fruit flies, chemosensory perception occurs primarily through sensilla on the antennal flagella, maxillary palps, and ovipositor. Identifying these sensilla provides insights into olfaction, which may lead to improvements in insect control measures.

View Article and Find Full Text PDF

The argan tree (Argania spinosa L. Skeels), native to the sub-Saharan region of Morocco, is an endangered agroforestry species renowned for producing one of the world's most expensive and sought-after oils. However, this valuable resource is threatened by the Mediterranean fruit fly (Ceratitis capitata (Wied.

View Article and Find Full Text PDF

The first complete mitochondrial genome of Spinturnix psi (Dermanyssoidea, Spinturnicidae): gene content, composition, rearrangement and phylogenetic implications.

Exp Appl Acarol

September 2025

Institute of Pathogens and Vectors, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University, 22 Wanhua St, Dali, 671000, China.

The family Spinturnicidae belongs to the suborder Monogynapsida, superfamily Dermanyssoidea, and exclusively parasitizes the body surface of bats. In the present study, we determined the complete mitochondrial genome of Spinturnix psi, a species of bat mite, and subsequently conducted a comprehensive analysis of its genomic information. The mitochondrial genome of S.

View Article and Find Full Text PDF

Alternating current (AC) electrolysis offers a promising strategy for modulating redox states in metal-catalyzed reactions, yet its mechanistic basis remains poorly understood. Here, we uncover how AC frequency synchronizes with key steps in a Ni-catalyzed cross-coupling cycle to control product selectivity between C-N and C-C coupling. We show that optimal C-N selectivity arises from minimizing the exposure of a key intermediate, Ni(Ar)Br, to reducing conditions that otherwise promote off-cycle Ni species and undesired C-C homocoupling.

View Article and Find Full Text PDF

Our understanding of bat immunoglobulins (Igs) and their functions remains limited despite the importance of Ig activation in both innate and adaptive immune responses. Positive selection is known to act on other immune genes needed to mount adaptive immune responses, suggesting that selection may also act on bat Ig constant regions. To test whether bat Ig constant regions have evolved adaptations related to immunity, we reconstructed the evolutionary relationships of the constant region of bat IgM, IgA, and IgG genes and analyzed their sequences for signs of selection.

View Article and Find Full Text PDF