98%
921
2 minutes
20
Background: Numerous scaffold-level sequences for wheat are now being released and, in this context, we report on a strategy for improving the overall assembly to a level comparable to that of the human genome.
Results: Using chromosome 7A of wheat as a model, sequence-finished megabase-scale sections of this chromosome were established by combining a new independent assembly using a bacterial artificial chromosome (BAC)-based physical map, BAC pool paired-end sequencing, chromosome-arm-specific mate-pair sequencing and Bionano optical mapping with the International Wheat Genome Sequencing Consortium RefSeq v1.0 sequence and its underlying raw data. The combined assembly results in 18 super-scaffolds across the chromosome. The value of finished genome regions is demonstrated for two approximately 2.5 Mb regions associated with yield and the grain quality phenotype of fructan carbohydrate grain levels. In addition, the 50 Mb centromere region analysis incorporates cytological data highlighting the importance of non-sequence data in the assembly of this complex genome region.
Conclusions: Sufficient genome sequence information is shown to now be available for the wheat community to produce sequence-finished releases of each chromosome of the reference genome. The high-level completion identified that an array of seven fructosyl transferase genes underpins grain quality and that yield attributes are affected by five F-box-only-protein-ubiquitin ligase domain and four root-specific lipid transfer domain genes. The completed sequence also includes the centromere.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6097218 | PMC |
http://dx.doi.org/10.1186/s13059-018-1475-4 | DOI Listing |
Genome Biol
September 2025
Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.
Background: Centromeres are crucial for precise chromosome segregation and maintaining genome stability during cell division. However, their evolutionary dynamics, particularly in polyploid organisms with complex genomic architectures, remain largely enigmatic. Allopolyploid wheat, with its well-defined hierarchical ploidy series and recent polyploidization history, serves as an excellent model to explore centromere evolution.
View Article and Find Full Text PDFPlant Sci
September 2025
Fermentation and Phytofarming Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India. Electronic address:
Auxin, one of the earliest recognized and extensively investigated phytohormones, is crucial in plant growth and survival in adverse environmental conditions. Two gene families primarily regulate auxin signaling: auxin response factors (ARFs) and auxin/indole-3-acetic acid (Aux/IAA). Aux/IAA family proteins are recognized as essential elements of the nuclear auxin signaling system, inhibiting gene transcription in their presence and facilitating gene activation upon their degradation.
View Article and Find Full Text PDFPlant Cell Environ
September 2025
State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry
CRISPR ribonucleoprotein (RNP)-mediated genome editing offers a transgene-free platform for precise genetic modification in diverse herbaceous and tree species, including rice, wheat, apple, poplar, oil palm, rubber tree and grapevine. However, its application in woody plants faces distinct challenges, notably inefficient delivery and regeneration difficulties, particularly in species such as bamboo. While some of these issues also occur in herbaceous plants, they are often significantly more complex in woody species due to factors such as intricate cell wall architecture, widespread recalcitrant genotypes and inherent limitations of current delivery platforms.
View Article and Find Full Text PDFPlant Genome
September 2025
Agriculture Victoria, Centre for AgriBioscience, AgriBio, Bundoora, Victoria, Australia.
Global wheat (Triticum aestivum L.) production faces significant challenges due to the destructive nature of leaf (Puccinia triticina; leaf rust [Lr]), stem (Puccinia graminis; stem rust [Sr]), and stripe (Puccinia striiformis; stripe rust [Yr]) rust diseases. Despite ongoing efforts to develop resistant varieties, these diseases remain a persistent challenge due to their highly evolving nature.
View Article and Find Full Text PDFMedicine (Baltimore)
September 2025
Department of Cardiology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China.
The relationship between dietary habits, including the consumption of eggs, dairy products, and sugar, and the development of disease is well-established. However, further investigation is required to elucidate the precise associations between these dietary habits and cardiovascular disease (CVD). The objective of this study was to analyze existing genome-wide association studies in order to identify causal relationships between dietary habits and CVD.
View Article and Find Full Text PDF