98%
921
2 minutes
20
An increasing number of two-dimensional (2D) materials have already been achieved experimentally or predicted theoretically, which have potential applications in nano- and opto-electronics. Various applications of electronic devices are closely related to their thermal transport properties. In this work, the strain dependence of phonon transport in monolayer SiC with a perfect planar hexagonal honeycomb structure is investigated by solving the linearized phonon Boltzmann equation. It is found that the room-temperature lattice thermal conductivity (κL) of monolayer SiC is two orders of magnitude lower than that of graphene. The low κL is due to small group velocities and short phonon lifetimes, which can also be explained by the polarized covalent bond due to large charge transfer from Si to C atoms. In a considered strain range, it is proved that the SiC monolayer is mechanically and dynamically stable. With increased tensile strain, the κL of the SiC monolayer shows an unusual nonmonotonic up-and-down behavior, which is due to the competition between the change of phonon group velocities and phonon lifetimes of low frequency phonon modes. At low strain values (<8%), the phonon lifetime enhancement induces the increased κL, while at high strain values (>8%) the reduction of group velocities as well as the decrease of the phonon lifetimes are the major mechanisms responsible for decreased κL. Our works further enrich the studies on the phonon transport properties of 2D materials with a perfect planar hexagonal honeycomb structure, and motivate further experimental studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8cp02006j | DOI Listing |
Phys Rev Lett
August 2025
Huazhong University of Science and Technology, School of Physics and Wuhan National High Magnetic Field Center, Wuhan 430074, China.
The intervalley coherent (IVC) phase in graphene systems arises from the coherent superposition of wave functions of opposite valleys, whose direct microscopic visualization provides pivotal insight into the emergent physics. Here, we successfully visualize the IVC phase in a heterostructure of monolayer PtSe_{2} and bilayer-graphene (BLG) on graphite. Using spectroscopic imaging scanning tunneling microscopy, we observe a sqrt[3]×sqrt[3] modulation pattern superimposed on the higher-order moiré superlattice of the heterostructure, which correlates with a gap-opening feature around the Fermi level and displays an antiphase real-space conductance distribution of the two gap edges.
View Article and Find Full Text PDFNanoscale
August 2025
Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany.
Van der Waals heterostructures have become a rapidly growing field in condensed matter research, offering a platform to engineer novel quantum systems by stacking different two-dimensional (2D) materials. A diverse range of material combinations, including hexagonal boron nitride, transition metal dichalcogenides and graphene, with electronic properties spanning from insulating to semiconducting, metallic, and semimetallic, have been explored to tune the properties of these heterostacks. However, understanding the interactions and charge transfer between the stacked layers remains challenging, particularly when more than two layers are involved.
View Article and Find Full Text PDFNano Lett
August 2025
Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan.
Engineering thermal strain is crucial for tuning the properties and functionalities of transition metal dichalcogenides (TMDs). Thermal strain arises from the thermal expansion coefficient (TEC) mismatch between TMDs and substrates, but conventional substrates often induce inhomogeneous broadening in the electronic structure, mainly due to surface roughness and charged impurities. Here, we demonstrate uniform thermal strain in monolayer WSe via van der Waals epitaxy on graphene/SiC(0001) substrates.
View Article and Find Full Text PDFAdv Mater
August 2025
Physikalisches Institut, Universität Würzburg, D-97074, Würzburg, Germany.
The quantum spin Hall insulator bismuthene, a two-third monolayer of bismuth on SiC(0001), is distinguished by helical metallic edge states that are protected by a groundbreaking 800 meV topological gap, making it ideal for room temperature applications. This massive gap inversion arises from a unique synergy between flat honeycomb structure, strong spin orbit coupling, and an orbital filtering effect that is mediated by the substrate. However, the rapid oxidation of bismuthene in air has severely hindered the development of applications, so far confining experiments to ultra-high vacuum conditions.
View Article and Find Full Text PDFNanoscale
May 2025
NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza S. Silvestro 12, 56127 Pisa, Italy.
Alkali metal intercalation of graphene layers has been of particular interest due to potential applications in electronics, energy storage, and catalysis. Rubidium (Rb) is one of the largest alkali metals and among the least investigated as an intercalant. Here, we report a systematic investigation, with a multi-technique approach, of the phase formation of Rb under epitaxial monolayer graphene on SiC(0001).
View Article and Find Full Text PDF