Differential expression of serum proteins in rats subchronically exposed to arsenic identified by iTRAQ-based proteomic technology-14-3-3 ζ protein to serve as a potential biomarker.

Toxicol Res (Camb)

Key Lab of Etiologic Epidemiology of National Health and Family Planning Commission , Key Lab of Etiologic Epidemiology of Education Bureau of Heilongjiang Province , The Center for Endemic Disease Control , Chinese Center for Disease Control and Prevention , Harbin Medical University, Harbin 15008

Published: March 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Arsenic is a multi-system toxicant. However, the mechanism of arsenic toxicity is not fully clarified and few effective protein biomarkers could be used for arsenic poisoning. This study was to investigate the differentially expressed proteins in the serum of rats subchronically exposed to arsenic. Sixty male rats were randomly divided into four groups, and the dose of sodium arsenite in drinking water for each group was 0, 2, 10, and 50 mg L, respectively. The exposure lasted for 12 weeks. An Isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic approach was used to identify the differentially expressed proteins in serum between control and 50 mg L groups. A total of 201 serum proteins were identified by iTRAQ, of which 12 were significantly changed by arsenic exposure with two up-regulated and ten down-regulated proteins. One down-regulated protein 14-3-3 ζ, an abundant protein expressed in the brain, was verified by ELISA using serum samples and by immunohistochemical, real time PCR, and western blot methods using brain tissues in four groups. Our work provided valuable insight into the serum protein changes in rats exposed to arsenic, and indicated that 14-3-3 ζ may serve as a useful biomarker for nervous damage caused by arsenic poisoning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6062359PMC
http://dx.doi.org/10.1039/c5tx00393hDOI Listing

Publication Analysis

Top Keywords

exposed arsenic
12
serum proteins
8
rats subchronically
8
subchronically exposed
8
arsenic
8
itraq-based proteomic
8
arsenic poisoning
8
differentially expressed
8
expressed proteins
8
proteins serum
8

Similar Publications

Involvement of the PI3K/Nrf2 Pathway in Arsenic-Induced Endocrine and Thyroid Toxicity in Rats.

J Appl Toxicol

September 2025

School of Public Health, Key Laboratory of Special Environmental and Health Research, Xinjiang Medical University, Urumqi, China.

Humans' exposure to arsenic (As) has been associated with the development of various diseases. Some health effects may be mediated by arsenic-induced toxicity to the thyroid and endocrine systems, but its underlying mechanisms remain unclear. The overall aim of our study was focused on using sodium arsenite (NaAsO)-exposed rats to investigate the involvement of the phosphatidylinositol 3-kinase (PI3K) and transcription factor NF-E2-related factor 2 (Nrf2) pathways in toxicity to the thyroid and endocrine systems.

View Article and Find Full Text PDF

Evaluation of lung oxidative stress and inflammatory state using exhaled breath condensate analysis in early-life arsenic exposure.

J Breath Res

September 2025

Department of Anatomy, Physiology, and Cell Biology, , University of California Davis, School of Veterinary Medicine, Davis, California, 95616-5270, UNITED STATES.

Millions of people worldwide are exposed to environmental arsenic in drinking water, resulting in both malignant and nonmalignant diseases. Interestingly, early life exposure by itself is sufficient to produce higher incidences of these diseases later in life. Based on the delayed onset of disease, we hypothesized that early life arsenic exposure would also induce long-term alterations in the metabolic profile.

View Article and Find Full Text PDF

Background: In Bangladesh, > 50 million individuals are chronically exposed to inorganic arsenic (iAs) through drinking water, increasing risk for cancer and other iAs-related diseases. Previous studies show that individuals' ability to metabolize and eliminate iAs, and their risk of toxicity, is influenced by genetic variation in the AS3MT and FTCD gene regions.

Methods: To identify additional loci influencing arsenic metabolism, we used data from Bangladeshi individuals to conduct genome-wide association analyses of the relative abundances of arsenic species measured in both urine (n = 6,540) and blood (n = 976).

View Article and Find Full Text PDF

Cold plasma and green magnetic nanocomposite mitigate arsenic and nanoplastic toxicity in wheat plants by up-regulating enzymatic and non-enzymatic antioxidants.

Ecotoxicol Environ Saf

August 2025

Department of Plant Production and Genetics, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran; Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran.

Soil and water contamination by heavy metals and nanoplastics poses a critical environmental challenge, threatening agricultural productivity and food safety. This study investigated a novel strategy to mitigate the combined toxicity of arsenic (As) and polymethyl methacrylate nanoplastics (PMMANPs) in wheat using cold plasma (CP) seed priming and a green-synthesized Ag/Zn/Fe nanocomposite (NC). A randomized complete block design (RCBD) with three replications was employed.

View Article and Find Full Text PDF

Chromium (Cr) and arsenic (As) pose a threat to the exposed population, leading to various renal ailments. Although individual toxicity has been well investigated, little is known about their combined effects. In light of the mounting concern over the environmental impact of heavy metals, the current study investigated the potential benefits of the selected nutraceuticals, i.

View Article and Find Full Text PDF