98%
921
2 minutes
20
Actinobacteria are an important source of commercial (bio)compounds for the biotechnological and pharmaceutical industry. They have also been successfully exploited in the search of novel biocatalysts. We set out to explore a recently identified actinomycete, C34, isolated from a hyper-arid region, the Atacama desert, for Baeyer-Villiger monooxygenases (BVMOs). Such oxidative enzymes are known for their broad applicability as biocatalysts by being able to perform various chemical reactions with high chemo-, regio-, and/or enantioselectivity. By choosing this specific Actinobacterium, which comes from an extreme environment, the respective enzymes are also expected to display attractive features by tolerating harsh conditions. In this work, we identified two genes in the genome of () that were predicted to encode for Type I BVMOs, the respective flavoproteins share 49% sequence identity. The two genes were cloned, overexpressed in with phosphite dehydrogenase (PTDH) as fusion partner and successfully purified. Both flavin-containing proteins showed NADPH-dependent Baeyer-Villiger oxidation activity for various ketones and sulfoxidation activity with some sulfides. Gratifyingly, both enzymes were found to be rather robust by displaying a relatively high apparent melting temperature (45°C) and tolerating water-miscible cosolvents. Specifically, Sle_62070 was found to be highly active with cyclic ketones and displayed a high regioselectivity by producing only one lactone from 2-phenylcyclohexanone, and high enantioselectivity by producing only normal (-)-1,5 and abnormal (-)-1,5 lactones ( > 99%) from bicyclo[3.2.0]hept-2-en-6-one. These two newly discovered BVMOs add two new potent biocatalysts to the known collection of BVMOs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6058054 | PMC |
http://dx.doi.org/10.3389/fmicb.2018.01609 | DOI Listing |
Nat Prod Rep
September 2025
State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China.
Covering: up to April 2025Bacterial aromatic polyketides represent a notable class of natural products that have found extensive applications in clinical treatments. In their biosynthesis, oxidative rearrangements represent critical transformations that typically afford diverse scaffolds, structural rigidity, and biological activities. In this context, it is evident that redox enzymes are frequently implicated in various rearrangement processes, whereby they facilitate the transformation of pathway precursors into mature natural products.
View Article and Find Full Text PDFMicrob Cell Fact
August 2025
Molecular Plant Biology Unit, Department of Life Technologies, University of Turku, Turku, Finland.
Cyanobacteria are emerging as a promising platform for whole-cell biotransformation, harnessing solar energy to drive biocatalytic reactions through recombinant enzymes. However, optimisation remains challenging due to the complexity of the cyanobacterial metabolism and the regulatory framework in which heterologous enzymes operate. While many enzymes have been deployed for light-driven whole-cell biotransformations, the different experimental conditions used between studies make direct comparison and systematic improvement difficult.
View Article and Find Full Text PDFMicroorganisms
August 2025
Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
Petroleum-contaminated terrestrial ecosystems require effective bioremediation strategies. In this study, genomic analysis revealed key biodegradation genes on the 21# chromosome: alkane hydroxylases (, , ) and aromatic ortho-cleavage pathway genes (). Phylogenetic and multiple sequence alignment analyses of the gene in strain 21# revealed the presence of signature motifs characteristic of Baeyer-Villiger monooxygenase.
View Article and Find Full Text PDFJ Hazard Mater
August 2025
Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266404, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China; College of Earth Science, Univer
Polypropylene (PP), a widely used plastic, is difficult to recycle, creating environmental challenges. Despite some microorganisms having been reported to degrade PP, their capabilities are limited and generally require pretreatment. In this study, we report a marine fungus, Alternaria alternata FB1, that degrades untreated pure PP.
View Article and Find Full Text PDFNano Lett
August 2025
State Key Laboratory of Organic-Inorganic Composites, Key Lab of Biomedical Materials of Natural Macromolecules (Ministry of Education), Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
The selective oxygenation of organic compounds via Baeyer-Villiger (B-V) oxidation is crucial for producing value-added chemicals. Although biomimetic catalysts inspired by Baeyer-Villiger monooxygenase (BVMO) and employing a flavin cofactor have shown promise, their effectiveness has been limited by the difficulty in replicating enzymatic active sites, particularly for producing versatile lactones with low ring strain (e.g.
View Article and Find Full Text PDF