98%
921
2 minutes
20
Alcohol wastewater (AW) as carbon source for enhancing Chlorella pyrenoidosa growth and lipid accumulation in anaerobically digested starch wastewater (ADSW) was performed in outdoor cultivation. The biomass and lipid production significantly increased while adding optimal amount of AW (AW/ADSW=1:15) during exponential phase. In comparison with blank ADSW culture, the optimal AW addition increased the biomass production, lipid content and productivity by 35.29%, 102.68% and 227.91%, respectively. However, AW addition caused severe bacterial contamination and the total bacterial increased by 4.62-fold. Simultaneously, the optimal consortia of microalgae/bacteria effectively removed nutrients from the wastewater, including 405.18±36.47mgCOD/L/day, 49.15±5.54mgN/L/day and 6.72±1.24mgP/L/day.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2017.09.152 | DOI Listing |
BMC Plant Biol
September 2025
Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia.
Drought stress affects plant growth and production. To cope with drought stress, plants induced physiological and metabolic changes, serving as a protective approach under drought-stress conditions. The response to drought can vary based on plant type (C3 vs.
View Article and Find Full Text PDFBioresour Technol
September 2025
College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People's Republic of China; Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004,
This study investigated the inhibitory effect of sucrose on the autolysis of recombinant Bacillus subtilis WB600 during keratinase production and elucidated its mechanism. Growth curves, cell morphology observations, cell wall integrity detection, and transcriptome analysis revealed that 2 % sucrose significantly increased cell biomass and delayed autolysis. Keratinase activity reached 5670.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650093, China.
Encapsulation of non-noble bimetallic nanoparticles within a zeolite framework can improve the stability and accessibility of active sites, but the single microporous structure and poor metal stability decreased the catalytic performance of the catalyst. Here, 3D hierarchical ZSM-5 zeolite encapsulated NiCo nanoparticles (NiCo@3DHZ5) were synthesized by Bottom-up confined steam-assisted crystallization (SAC) one-pot hydrothermal method and applied to the hydrodeoxygenation of vanillin. A series of characterizations showed that highly stable alloyed NiCo nanoparticles were encapsulated in a framework of 3DHZ5, the strong metal-zeolite interactions resulted in highly dispersed NiCo nano-alloys facilitated hydrogen adsorption and spillover of active hydrogen atoms, and the 3D hierarchical structure promoted oxygenated substrate diffusion, the synergy interaction between the alloy particles confined in the 3DHZ5 pores and the acidic sites on the zeolite surface promoted the selective conversion of vanillin.
View Article and Find Full Text PDFEcotoxicol Environ Saf
September 2025
Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, China. Ele
Seven plant growth-promoting bacteria (PGPB) were isolated from extracts of surface-sterilized Sedum alfredii Hance. Among the seven isolates, the strain SaRB5 identified as Stenotrophomonas maltophilia through 16S rDNA sequence analysis, exhibited highest levels of heavy metal resistance and plant growth-promoting traits. SaRB5 tolerated high concentrations of cadmium (Cd) (1.
View Article and Find Full Text PDFAnnu Rev Microbiol
September 2025
3Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
Plant biomass has emerged as a cornerstone of the global bioenergy landscape because of its abundance and cost-effectiveness. The cell wall of plant biomass is an intricate network of cellulose, hemicellulose, and lignin. The hydrolysis of cellulose and hemicellulose by holoenzymes converts these polymers into monosaccharides and paves the way for the production of bioethanol and other bio-based products.
View Article and Find Full Text PDF