Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Plastid ribosomes are very similar in structure and function to the ribosomes of their bacterial ancestors. Since ribosome biogenesis is not thermodynamically favorable under biological conditions it requires the activity of many assembly factors. Here we have characterized a homolog of bacterial RsgA in Arabidopsis thaliana and show that it can complement the bacterial homolog. Functional characterization of a strong mutant in Arabidopsis revealed that the protein is essential for plant viability, while a weak mutant produced dwarf, chlorotic plants that incorporated immature pre-16S ribosomal RNA into translating ribosomes. Physiological analysis of the mutant plants revealed smaller, but more numerous, chloroplasts in the mesophyll cells, reduction of chlorophyll a and b, depletion of proplastids from the rib meristem and decreased photosynthetic electron transport rate and efficiency. Comparative RNA sequencing and proteomic analysis of the weak mutant and wild-type plants revealed that various biotic stress-related, transcriptional regulation and post-transcriptional modification pathways were repressed in the mutant. Intriguingly, while nuclear- and chloroplast-encoded photosynthesis-related proteins were less abundant in the mutant, the corresponding transcripts were increased, suggesting an elaborate compensatory mechanism, potentially via differentially active retrograde signaling pathways. To conclude, this study reveals a chloroplast ribosome assembly factor and outlines the transcriptomic and proteomic responses of the compensatory mechanism activated during decreased chloroplast function.

Download full-text PDF

Source
http://dx.doi.org/10.1111/tpj.14040DOI Listing

Publication Analysis

Top Keywords

arabidopsis thaliana
8
chloroplast ribosome
8
weak mutant
8
plants revealed
8
compensatory mechanism
8
mutant
6
atrsga arabidopsis
4
thaliana maturation
4
maturation small
4
small subunit
4

Similar Publications

Dormancy release and germination of the seed are two separate, but continuous phases controlled by both external (e.g., light and temperature) and internal (e.

View Article and Find Full Text PDF

CRINKLY4: Multifaceted Roles Beyond Epidermal Cell Differentiation in Plant Development?

Plant Cell Environ

September 2025

Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Scienc

Receptor-like kinases (RLKs) play essential roles in plant growth and development. CRINKLY4 (CR4), one of the first reported RLKs in plants, is a well-known regulator of epidermal cell differentiation during leaf and seed development in maize. Within the last four decades, the functional landscape of CR4 has emerged across diverse developmental contexts and species, including dicots (e.

View Article and Find Full Text PDF

Endophytic Fusarium isolates from Ceratozamia mirandae enhance tomato growth, suppress pathogenic fungi, and induce protection against Botrytis cinerea.

Rev Argent Microbiol

September 2025

IPICYT, División de Biología Molecular, Laboratorio de Genómica Funcional y Comparativa, Camino a la Presa San José 2055, Col. Lomas 4 Sección, 78216 San Luis Potosí, SLP, Mexico.

Fungal diseases in agricultural crops cause economic losses, with chemical control being the conventional method to manage them. However, this approach negatively impacts both the environment and human health. This study focused on endophytic fungi isolated from the roots of Ceratozamia mirandae in the Mexican locality of Juan Sabines (Villa Corzo, Chiapas).

View Article and Find Full Text PDF

CYP72A15 confers resistance against penoxsulam to Echinochloa phyllopogon.

Pestic Biochem Physiol

November 2025

Shenyang Agricultural University, College of Plant Protection, Shenyang, Liaoning 110866, PR China. Electronic address:

As the weed Echinochloa phyllopogon has rapidly developed multi- and cross-resistance to several herbicides, we aimed to determine the mechanism underlying penoxsulam resistance in weeds. There was no target mutation in the tested population, and P450 enzyme activity was significantly higher in the penoxsulam-treated resistant population, confirming that non-target-site resistance was dominant. The antioxidant enzyme activity of the resistant population was higher than that of the sensitive population following the application of the penoxsulam and cleared HO faster.

View Article and Find Full Text PDF

The cytoplasmic N- and C-termini are dispensable for SLAH3 to mediate nitrate-dependent ammonium detoxification in Arabidopsis.

Biochem Biophys Res Commun

August 2025

Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China. Electronic address: xiaochb@lz

Ammonium (NH) toxicity significantly limits nitrogen use efficiency (NUE) in agriculture. Nitrate (NO) supplementation mitigates this toxicity, with the anion channel SLAH3 playing a central role by mediating NO efflux to counteract NH-induced rhizosphere acidification. SLAH3, a plasma membrane protein with ten transmembrane domains and cytosolic N- and C-termini, is intrinsically silent.

View Article and Find Full Text PDF