Tracking resting state connectivity dynamics in veterans with PTSD.

Neuroimage Clin

Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, USA; University of Oklahoma Institute for Biomedical Engineering, Science and Technology, Norman, OK, USA; Laureate Institute for Brain Research, Tulsa, OK, USA. Electronic address:

Published: January 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Posttraumatic stress disorder (PTSD) is a trauma- and stressor-related disorder that may emerge following a traumatic event. Neuroimaging studies have shown evidence of functional abnormality in many brain regions and systems affected by PTSD. Exaggerated threat detection associated with abnormalities in the salience network, as well as abnormalities in executive functions involved in emotions regulations, self-referencing and context evaluation processing are broadly reported in PTSD. Here we aimed to investigate the behavior and dynamic properties of fMRI resting state networks in combat-related PTSD, using a novel, multimodal imaging approach. Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) was employed to measure neurobiological brain activity among 36 veterans with combat-related PTSD and 20 combat-exposed veterans without PTSD. Based on the recently established method of measuring temporal-independent EEG microstates, we developed a novel strategy to integrate EEG and fMRI by quantifying the fast temporal dynamics associated with the resting state networks. We found distinctive occurrence rates of microstates associated with the dorsal default mode network and salience networks in the PTSD group as compared with control. Furthermore, the occurrence rate of the microstate for the dorsal default mode network was positively correlated with PTSD severity, whereas the occurrence rate of the microstate for the anterior salience network was negatively correlated with hedonic tone reported by participants with PTSD. Our findings reveal a novel aspect of abnormal network dynamics in combat-related PTSD and contribute to a better understanding of the pathophysiology of the disorder. Simultaneous EEG and fMRI will be a valuable tool in continuing to study the neurobiology underlying PTSD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6051475PMC
http://dx.doi.org/10.1016/j.nicl.2018.04.014DOI Listing

Publication Analysis

Top Keywords

resting state
12
ptsd
12
combat-related ptsd
12
veterans ptsd
8
salience network
8
state networks
8
eeg fmri
8
dorsal default
8
default mode
8
mode network
8

Similar Publications

Metagenomic analyses of microbial communities have unveiled a substantial level of interspecies and intraspecies genetic diversity by reconstructing metagenome-assembled genomes (MAGs). The MAG database (MAGdb) boasts an impressive collection of 74 representative research papers, spanning clinical, environmental, and animal categories and comprising 13,702 paired-end run accessions of metagenomic sequencing and 99,672 high quality MAGs with manually curated metadata. MAGdb provides a user-friendly interface that users can browse, search, and download MAGs and their corresponding metadata information.

View Article and Find Full Text PDF

Rare variants in , the gene encoding the GluA3 subunit of amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs), are associated with defects in early brain development. Disease-causing variants are generally categorised as either loss of function (LoF) or gain of function (GoF) that appear to be linked to different symptoms. Here, we reported a de novo variant (N651D) that has mixed LoF and GoF in a female patient with a devastating developmental and epileptic encephalopathy, parkinsonism and cortical malformation.

View Article and Find Full Text PDF

Characterization of CNS Network Changes in Two Rodent Models of Chronic Pain.

Biol Pharm Bull

September 2025

Computational and Biological Learning Laboratory, University of Cambridge, Cambridge CB21PZ, United Kingdom.

Neuroimaging in rodents holds promise for advancing our understanding of the central nervous system (CNS) mechanisms that underlie chronic pain. Employing two established, but pathophysiologically distinct rodent models of chronic pain, the aim of the present study was to characterize chronic pain-related functional changes with resting-state functional magnetic resonance imaging (fMRI). In Experiment 1, we report findings from Lewis rats 3 weeks after Complete Freund's adjuvant (CFA) injection into the knee joint (n = 16) compared with the controls (n = 14).

View Article and Find Full Text PDF

The current study sought to explore the impact of a novel noninvasive treatment called transcranial photobiomodulation (PBM) on resting-state functional connectivity (rsFC) of the cerebellum in individuals with a history of repetitive head acceleration events (RHAEs). RHAEs are associated with cumulative neurological compromise, including chronic alterations in rsFC; however, few treatments have been investigated to mitigate these effects. A recent study by our team demonstrated that PBM treatment led to improvements in measures of balance and motor function in adults with RHAE exposure.

View Article and Find Full Text PDF

Sexual dimorphism of white-matter functional connectome in healthy young adults.

Prog Neuropsychopharmacol Biol Psychiatry

September 2025

School of Mathematics and Statistics, Guangdong University of Foreign Studies, Guangzhou, PR China. Electronic address:

Background: Sexual dimorphism in human brain has garnered significant attention in neuroscience research. Although multiple investigations have examined sexual dimorphism in gray matter (GM) functional connectivity (FC), the research of white matter (WM) FC remains relatively limited.

Methods: Utilizing resting-state fMRI data from 569 healthy young adults, we investigated sexual dimorphism in the WM functional connectome.

View Article and Find Full Text PDF