Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

β-Lactoglobulin (BLG), a member of lipocalin family, is one of the major bovine milk allergens. This protein exists as a dimer of two identical subunits and contains two intramolecular disulfide bonds that are responsible for its resistance to trypsin digestion and allergenicity. This study aimed to evaluate the effect of reduction of disulfide bonds of BLG with different rice thioredoxins (Trxs) on its digestibility and allergenicity. Therefore, the active recombinant forms of three rice Trx isoforms (OsTrx1, OsTrx20, and OsTrx23) and one rice NADPH-dependent Trx reductase isoform (OsNTRB) were expressed in Escherichia coli. Based on SDS-PAGE, HPLC analysis, and competitive ELISA, the reduction of disulfide bonds of BLG with OsNTRB/OsTrx23, OsNTRB/OsTrx1, GSH/OsTrx1, or GSH/OsTrx20 increased its trypsin digestibility and reduced its immunoreactivity. The finding of this study opens new insights for application of plant Trxs in the improvement of food protein digestibility. Especially, the use of OsTrx20 and OsTrx1 are more cost-effective than E. coli and animal Trxs due to their reduction by GSH and no need to NADPH and Trx reductase as mediator enzyme.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-018-2793-4DOI Listing

Publication Analysis

Top Keywords

disulfide bonds
12
reduction disulfide
8
bonds blg
8
trx reductase
8
enhancement tryptic
4
digestibility
4
tryptic digestibility
4
digestibility milk
4
milk β-lactoglobulin
4
β-lactoglobulin treatment
4

Similar Publications

Glycocins are a growing family of ribosomally synthesized and posttranslationally modified peptides (RiPPs) that are O- and/or S-glycosylated. Using a sequence similarity network of putative glycosyltransferases, the thg biosynthetic gene cluster was identified in the genome of Thermoanaerobacterium thermosaccharolyticum. Heterologous expression in Escherichia coli showed that the glycosyltransferase (ThgS) encoded in the biosynthetic gene cluster (BGC) adds N-acetyl-glucosamine (GlcNAc) to Ser and Cys residues of ThgA.

View Article and Find Full Text PDF

Deep-sea salt as a novel additive for 3D-printed surimi: boosting protein bonding, antioxidant capacity, and digestibility.

Food Chem X

August 2025

College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 5

Enhancing both structural integrity and nutritional properties is crucial for developing a functional three-dimensional (3D)-printed surimi formulation. Herein, deep-sea salt was used as a substitute for conventional salt to develop 3D-printed surimi. The physicochemical properties, sensory scores, microstructural examinations, chemical bonding analysis, digestion studies, and antioxidant activity of the 3D-printed surimi were systematically evaluated.

View Article and Find Full Text PDF

As supramolecular assemblies, polypseudorotaxanes (PPR) exhibit inherent advantages in modular adaptability and structural programmability, with the potential to build tuneable platforms integrating various functionalities. Here we report the "one-pot" preparation of a self-assembled thiol-rich PPR (SPPR), where thiolated-α-cyclodextrins (SHαCD) spontaneously thread onto polymers, and are then crosslinked into a three-dimensional network by the thermally-triggered oxidation of thiols into disulfide bonds. The dynamic thiol groups along the SPPR provide remarkable modularity for the functionalization of thiophilic metal nanoparticles (NPs), exemplified by two application vectors.

View Article and Find Full Text PDF

The objective of this study was to investigate the enhancement mechanism of low-frequency magnetic field (LF-MF) on the gelation and structures of potato protein-linseed oil emulsion gel. Results indicated that the gel strength and water holding capacity of the gel induced by 6 mT LF-MF intensity were significantly increased from 0.33 N‧mm and 42.

View Article and Find Full Text PDF

Microenvironment-Programmed siRNA-Based Hydrogel for Spatiotemporal Gene Silencing in Wound Healing.

Adv Mater

September 2025

State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China.

Excessive inflammation and overexpressed matrix metalloproteinases (MMPs) are significant factors in the prolonged healing of chronic diabetic wounds. Here, a precise gene therapy strategy is proposed utilizing siRNA and employing intelligent responsive materials for controlled release to mechanistically intervene in the pathological process of chronic non-healing wounds. The system employs a cationic hyperbranched aminoglycoside with disulfide bonds (SS-HPT) as its core delivery mechanism.

View Article and Find Full Text PDF