Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Small-conductance Ca-activated K (SK) channels mediate medium afterhyperpolarization in the neurons and play a key role in the regulation of neuronal excitability. SK channels are potential drug targets for ataxia and Amyotrophic Lateral Sclerosis (ALS). SK channels are activated exclusively by the Ca-bound calmodulin. Previously, we identified an intrinsically disordered fragment that is essential for the mechanical coupling between Ca/calmodulin binding and channel opening. Here, we report that substitution of a valine to phenylalanine (V407F) in the intrinsically disordered fragment caused a ~6 fold increase in the Ca sensitivity of SK2-a channels. This substitution resulted in a novel interaction between the ectopic phenylalanine and M411, which stabilized PIP-interacting residue K405, and subsequently enhanced Ca sensitivity. Also, equivalent valine to phenylalanine substitutions in SK1 or SK3 channels conferred Ca hypersensitivity. An equivalent phenylalanine substitution in the Caenorhabditis elegans (C. elegans) SK2 ortholog kcnl-2 partially rescued locomotion defects in an existing C. elegans ALS model, in which human SOD1G85R is expressed at high levels in neurons, confirming that this phenylalanine substitution impacts channel function in vivo. This work for the first time provides a critical reagent for future studies: an SK channel that is hypersensitive to Ca with increased activity in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6048120PMC
http://dx.doi.org/10.1038/s41598-018-28783-2DOI Listing

Publication Analysis

Top Keywords

elegans als
8
als model
8
intrinsically disordered
8
disordered fragment
8
valine phenylalanine
8
phenylalanine substitution
8
channels
6
phenylalanine
5
v-to-f substitution
4
substitution sk2
4

Similar Publications

Aging is a major risk factor for neurodegenerative diseases associated with protein aggregation, including Huntington's disease and amyotrophic lateral sclerosis (ALS). Although these diseases involve different aggregation-prone proteins, their common late onset suggests a link to converging changes resulting from aging. In this study, we found that age-associated hyperactivation of EPS8/RAC signaling in Caenorhabditis elegans promotes the pathological aggregation of Huntington's disease-related polyglutamine repeats and ALS-associated mutant FUS and TDP-43 variants.

View Article and Find Full Text PDF

TDP-linked proteinopathies, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD) and limbic-predominant age-related TDP-43 encephalopathy (LATE), are characterised by pathogenic deposits containing transactive response DNA-binding protein 43 (TDP-43) in the brain and spinal cord of patients. These hallmark pathological features are associated with widespread neuronal dysfunction and progressive neurodegeneration. TDP-43's role as an essential RNA/DNA-binding protein in RNA metabolism and gene expression regulation is clear, but deciphering the intricate pathophysiological mechanisms underpinning TDP-43-mediated neurodegeneration is paramount for developing effective therapies and novel diagnostic tools for early detection before frank neuronal loss occurs.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a fatal disorder caused by motor neuron degeneration. Hexanucleotide repeat expansions in the C9orf72 gene, the most common genetic cause of ALS (C9-ALS), drive toxicity through different mechanisms. These pathological changes include alterations in stress granules (SGs), ribonucleoprotein complexes formed under stress conditions.

View Article and Find Full Text PDF

Heat shock factor-1 (HSF-1) plays a crucial role in orchestrating stress responses across diverse organisms and disease conditions. Here, we investigate how the HSF-1 signaling pathway influences the degradation of toxic proteins and neuropathological changes in the Caenorhabditis elegans model of amyotrophic lateral sclerosis (ALS). We found that overexpressing HSF-1 improves locomotor ability and increases the survival rate of ALS C.

View Article and Find Full Text PDF

Cytoplasmic TDP-43 leads to early functional impairments without neurodegeneration in a Serotonergic Neuron-Specific Model.

bioRxiv

July 2025

Universidad de Buenos Aires, Facultad de Ciencias Médicas, Departamento de Ciencias Fisiológicas. Buenos Aires, Argentina.

TDP-43 proteinopathies, such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), are marked by the pathological cytoplasmic accumulation of TAR DNA-binding protein 43 (TDP-43), leading to progressive neuronal dysfunction and degeneration. To investigate the early functional consequences of TDP-43 mislocalization, we generated models expressing either wild-type human TDP-43 or a variant with a mutated nuclear localization signal (ΔNLS), specifically in serotonergic neurons. These neurons were chosen because i) serotonin deficits are a feature of ALS/FTD and ii) in , they regulate well-characterized behaviors, providing a straightforward readout of neuronal function.

View Article and Find Full Text PDF