A prevailing view on postnatal brain development is that brain regions gradually acquire adult functions as they mature. The medial prefrontal cortex (mPFC) regulates reward learning, motivation, and behavioral inhibition, and undergoes a protracted postnatal maturation. During adolescence, reward-seeking behavior is heightened compared to adulthood - a developmental difference that may be driven by a hypoactive mPFC, with decreased top-down control of impulsive reward-seeking.
View Article and Find Full Text PDFHow mutations in FUS lead to neuronal dysfunction in amyotrophic lateral sclerosis (ALS) patients remains unclear. To examine mechanisms underlying ALS FUS dysfunction, we generate C. elegans knockin models using CRISPR-Cas9-mediated genome editing, creating R524S and P525L ALS FUS models.
View Article and Find Full Text PDFFollowing prolonged swimming, cycle between active swimming bouts and inactive quiescent bouts. Swimming is exercise for and here we suggest that inactive bouts are a recovery state akin to fatigue. It is known that cGMP-dependent kinase (PKG) activity plays a conserved role in sleep, rest, and arousal.
View Article and Find Full Text PDFAnimal behaviors are commonly organized into long-lasting states that coordinately impact the generation of diverse motor outputs such as feeding, locomotion, and grooming. However, the neural mechanisms that coordinate these distinct motor programs remain poorly understood. Here, we examine how the distinct motor programs of the nematode are coupled together across behavioral states.
View Article and Find Full Text PDFMutations in Cu/Zn superoxide dismutase 1 (SOD1) lead to Amyotrophic Lateral Sclerosis (ALS), a neurodegenerative disease that disproportionately affects glutamatergic and cholinergic motor neurons. Previous work with SOD1 overexpression models supports a role for SOD1 toxic gain of function in ALS pathogenesis. However, the impact of SOD1 loss of function in ALS cannot be directly examined in overexpression models.
View Article and Find Full Text PDFSmall-conductance Ca-activated K (SK) channels mediate medium afterhyperpolarization in the neurons and play a key role in the regulation of neuronal excitability. SK channels are potential drug targets for ataxia and Amyotrophic Lateral Sclerosis (ALS). SK channels are activated exclusively by the Ca-bound calmodulin.
View Article and Find Full Text PDF