Highly Conjugated Three-Dimensional Covalent Organic Frameworks Based on Spirobifluorene for Perovskite Solar Cell Enhancement.

J Am Chem Soc

Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, School of Polymer Science and Engineering , Qingdao University of Science and Technology, Qingdao 266042 , China.

Published: August 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Highly conjugated three-dimensional covalent organic frameworks (3D COFs) were constructed based on spirobifluorene cores linked via imine bonds (SP-3D-COFs) with novel interlacing conjugation systems. The crystalline structures were confirmed by powder X-ray diffraction and detailed structural simulation. A 6- or 7-fold interpenetration was formed depending on the structure of the linking units. The obtained SP-3D-COFs showed permanent porosity and high thermal stability. In application for solar cells, simple bulk doping of SP-3D-COFs to the perovskite solar cells (PSCs) substantially improved the average power conversion efficiency by 15.9% for SP-3D-COF 1 and 18.0% for SP-3D-COF 2 as compared to the reference undoped PSC, while offering excellent leakage prevention in the meantime. By aid of both experimental and computational studies, a possible photoresponsive perovskite-SP-3D-COFs interaction mechanism was proposed to explain the improvement of PSC performance after SP-3D-COFs doping.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.8b06291DOI Listing

Publication Analysis

Top Keywords

highly conjugated
8
conjugated three-dimensional
8
three-dimensional covalent
8
covalent organic
8
organic frameworks
8
based spirobifluorene
8
perovskite solar
8
solar cells
8
frameworks based
4
spirobifluorene perovskite
4

Similar Publications

Cross-reactivities in conjugation reactions involving iron oxide nanoparticles.

Beilstein J Nanotechnol

August 2025

Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada.

The preparation of multimodal nanoparticles by capping magnetic iron oxide nanoparticles (IONPs) with functional organic molecules is a major area of research for biomedical applications. Conjugation reactions, such as carbodiimide coupling and the highly selective class of reactions known as "click chemistry", have been instrumental in tailoring the ligand layers of IONPs to produce functional biomedical nanomaterials. However, few studies report the controls performed to determine if the loading of molecules onto IONPs is due to the proposed coupling reaction(s) employed, or some other unknown interaction with the IONP surface.

View Article and Find Full Text PDF

The supramolecular organization of functional molecules at the mesoscopic level influences their material properties. Typically, planar π-conjugated (disc- or linear-shaped) molecules tend to undergo one-dimensional (1D) stacking, whereas two-dimensional (2D) organization from such building blocks is seldom observed in spite of their technological potential. Herein, we rationally achieve both 1D and 2D organizations from a single planar, π-conjugated molecular system competitive interactions.

View Article and Find Full Text PDF

Integration of SuFEx and Sonogashira Cross-Coupling for the Synthesis of Structurally Diverse Aryl Acetylenes on DNA.

Org Lett

September 2025

Shanghai Institute for Advanced Immunochemical Studies & School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.

To address the current limitations of DNA-compatible Sonogashira cross-coupling reactions capable of accommodating a broad range of commercially available phenolic building blocks (BBs), an SuFEx-Sonogashira cross-coupling protocol has been developed. This protocol involves the conversion of readily accessible phenolic compounds into the corresponding aryl fluorosulfates within 96-well microplates via a highly efficient liquid-phase SuFEx reaction, followed by Sonogashira cross-coupling with DNA-conjugated terminal alkynes.

View Article and Find Full Text PDF

Aptamers as target-specific recognition elements in drug delivery.

Adv Drug Deliv Rev

September 2025

Biochemistry, CUNY Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, United States; Molecular, Cellular, and Developmental Biology, CUNY Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, United States; Chemistry, CUNY Gradua

Targeted drug delivery significantly enhances therapeutic efficacy across various diseases, particularly in cancer treatments, where conventional approaches such as chemotherapy and radiotherapy often cause severe side effects. In this context, nucleic acid aptamers-short, single-stranded DNA or RNA oligonucleotides capable of binding specific targets with high affinity-have emerged as promising tools for precision drug delivery and therapy. Aptamers can be selected against whole, living cells using SELEX and chemically modified for diverse applications.

View Article and Find Full Text PDF

This study demonstrates the successful fabrication of nanostructured Langmuir-Blodgett (LB) films combining the conjugated copolymer poly(9,9-dioctylfluorene--3,4-ethylenedioxythiophene) (PDOF--PEDOT) with spherical and triangular silver nanoparticles (AgNP). The LB technique allowed precise control over the molecular arrangement and distribution of the nanoparticles at the air-water interface, resulting in compact, reproducible and structurally ordered nanocomposite films. The structural and morphological properties of the interfacial monolayers and LB films were investigated using surface pressure-area isotherms, Brewster angle microscopy, polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS) and quartz crystal microbalance.

View Article and Find Full Text PDF