Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Long-term prophylaxis with subcutaneous (SC) administration of a highly concentrated plasma-derived C1-esterase inhibitor (C1-INH) formulation was recently approved by the Food and Drug Administration for hereditary angioedema (HAE) attack prevention.

Objective: To characterize the population pharmacokinetics of C1-INH (SC) (HAEGARDA ; CSL Behring) in healthy volunteers and HAE patients, and assess the variability and influence of covariates on pharmacokinetics.

Methods: C1-INH functional activity data obtained after administration of various C1-INH (intravenous; IV) and C1-INH (SC) doses from 1 study in healthy volunteers (n = 16) and 2 studies in subjects with HAE (n = 108) were pooled to develop a population pharmacokinetic model (NONMEM v7.2). Pharmacokinetic parameters derived from steady-state simulations based on the final model were also evaluated.

Results: C1-INH functional activity following C1-INH (SC) administration was described by a linear one-compartment model with first-order absorption and elimination, with inter-individual variability in all parameters tested. The mean population bioavailability of C1-INH (SC), and pharmacokinetic parameters for clearance (CL), volume of distribution, and absorption rate were estimated to be ~43%, 1.03 mL/hour/kg, 0.05 L/kg and 0.0146 hour , respectively. The effect of bodyweight on CL of C1-INH functional activity was included in the final model, estimated to be 0.74. Steady-state simulations of C1-INH functional activity vs time profiles in 1000 virtual HAE patients revealed higher minimum functional activity (C ) levels after twice-weekly dosing with 40 IU/kg (~40%) and 60 IU/kg (~48%) compared with 1000 IU IV (~30%). Based on the population pharmacokinetic model, the median time to peak concentration was ~59 hours and the median apparent plasma half-life was ~69 hours.

Conclusions And Clinical Relevance: Twice-weekly bodyweight-adjusted dosing of C1-INH (SC) exhibits linear pharmacokinetics and dose-dependent increases in C levels at each dosing interval. In this analysis, SC dosing led to maintenance of higher C levels than IV dosing.

Download full-text PDF

Source
http://dx.doi.org/10.1111/cea.13220DOI Listing

Publication Analysis

Top Keywords

functional activity
20
c1-inh functional
16
c1-inh
11
population pharmacokinetics
8
hereditary angioedema
8
healthy volunteers
8
hae patients
8
population pharmacokinetic
8
pharmacokinetic model
8
pharmacokinetic parameters
8

Similar Publications

Ultrathin Amorphous Iron Oxide Nanosheets for Improving the Electrochemical Performance of Li-S Batteries.

Langmuir

September 2025

Key Laboratory of Functional Molecular Solids (Ministry of Education), College of Chemistry and Materials Science, Anhui Key Laboratory of Biomedical Materials and Chemical Measurement, Anhui Normal University, Wuhu 241000, China.

The sluggish kinetics and diffusion of lithium polysulfide (LiPS) intermediates lead to the decline in the capacity and rate of high-energy lithium-sulfur (Li-S) batteries. Integrating adsorbents and electrocatalysts into the Li-S system is an effective strategy for suppressing the polysulfide shuttle and enhancing the redox kinetics of sulfur species. The disordered structure of the electrocatalysts exhibits significantly enhanced catalytic activity.

View Article and Find Full Text PDF

Pentameric ligand-gated ion channels control synaptic neurotransmission via an allosteric mechanism, whereby agonist binding induces global protein conformational changes that open an ion-conducting pore. For the proton-activated bacterial () ligand-gated ion channel (GLIC), high-resolution structures are available in multiple conformational states. We used a library of atomistic molecular dynamics (MD) simulations to study conformational changes and to perform dynamic network analysis to elucidate the communication pathways underlying the gating process.

View Article and Find Full Text PDF

It is helpful for diagnostic purposes to improve our current knowledge of gut development and serum biochemistry in young piglets. This study investigated serum biochemistry, and gut site-specific patterns of short-chain fatty acids (SCFA) and expression of genes related to barrier function, innate immune response, antioxidative status and sensing of fatty and bile acids in suckling and newly weaned piglets. The experiment consisted of two replicate batches with 10 litters each.

View Article and Find Full Text PDF

High-fat foods are decomposed into fatty acids during digestion and absorption, primarily occurring in the gastrointestinal tract, and numerous studies have indicated that long-term high-fat diets significantly increase the incidence of intestinal disorders. As a critical intestinal hormone, serotonin (5-hydroxytryptamine, 5-HT) is involved in regulating intestinal peristalsis, secretion, and visceral sensitivity. However, due to the lack of methods capable of reproducing intestinal mechanical activities and in situ monitoring of 5-HT levels, the influence of high-fat diets on intestinal 5-HT release remains unclear.

View Article and Find Full Text PDF