Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Alternative drug delivery approaches to treat cardiovascular diseases are currently under intense investigation. In this domain, the possibility to target the heart and tailor the amount of drug dose by using a combination of magnetic nanoparticles (NPs) and electromagnetic devices is a fascinating approach. Here, an electromagnetic device based on Helmholtz coils was generated for the application of low-frequency magnetic stimulations to manage drug release from biocompatible superparamagnetic Fe-hydroxyapatite NPs (FeHAs). Integrated with a fluidic circuit mimicking the flow of the cardiovascular environment, the device was efficient to trigger the release of a model drug (ibuprofen) from FeHAs as a function of the applied frequencies. Furthermore, the biological effects on the cardiac system of the identified electromagnetic exposure were assessed and by acute stimulation of isolated adult cardiomyocytes and in an animal model. The cardio-compatibility of FeHAs was also assessed and in an animal model. No alterations of cardiac electrophysiological properties were observed in both cases, providing the evidence that the combination of low-frequency magnetic stimulations and FeHAs might represent a promising strategy for controlled drug delivery to the failing heart.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6073647PMC
http://dx.doi.org/10.1098/rsif.2018.0236DOI Listing

Publication Analysis

Top Keywords

controlled drug
8
drug release
8
cardiovascular diseases
8
drug delivery
8
low-frequency magnetic
8
magnetic stimulations
8
animal model
8
drug
6
combined low-frequency
4
electromagnetic
4

Similar Publications

Aptamers as target-specific recognition elements in drug delivery.

Adv Drug Deliv Rev

September 2025

Biochemistry, CUNY Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, United States; Molecular, Cellular, and Developmental Biology, CUNY Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, United States; Chemistry, CUNY Gradua

Targeted drug delivery significantly enhances therapeutic efficacy across various diseases, particularly in cancer treatments, where conventional approaches such as chemotherapy and radiotherapy often cause severe side effects. In this context, nucleic acid aptamers-short, single-stranded DNA or RNA oligonucleotides capable of binding specific targets with high affinity-have emerged as promising tools for precision drug delivery and therapy. Aptamers can be selected against whole, living cells using SELEX and chemically modified for diverse applications.

View Article and Find Full Text PDF

Microgel-Crosslinked, thermo- and mechano- dual Responsive, Ketoprofen-Loaded hydrogels with high mechanical properties and rapid response.

Int J Pharm

September 2025

Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Instit

Smart hydrogels have advanced rapidly in recent years. However, systems responsive to a single stimulus are typically triggered by specific cues, limiting their adaptability in complex and dynamic biological environments. To overcome this limitation, this study developed a dual-responsive hydrogel sensitive to both temperature and mechanical stress.

View Article and Find Full Text PDF

Review of engineered magnetic chitosan nanoparticles for drug delivery: Advances, challenges, and future prospects.

Int J Biol Macromol

September 2025

Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India; Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand. Electronic address:

Magnetic chitosan nanoparticles represent a promising platform in targeted drug delivery by merging the biocompatibility and mucoadhesiveness of chitosan with the superparamagnetic iron-oxide cores magnetite (Fe₃O₄) or maghemite (γ-Fe₂O₃). This synergy enables enhanced therapeutic precision through external magnetic guidance, controlled release, and stimuli-responsive behavior. MCNPs are particularly valuable in oncology, allowing site-specific drug delivery, magnetic hyperthermia, and real-time imaging via MRI.

View Article and Find Full Text PDF

Peptide-targeted nanoparticles for tumor therapy.

J Control Release

September 2025

Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia; Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA. Electronic address:

Most chemotherapeutics distribute non-specifically throughout the body, resulting in off-target toxicities. Nanoparticle (NP) formulations provide a strategy to improve drug delivery by extending circulation time, protecting therapeutic agents from degradation, and enabling controlled release. However, delivering NPs effectively to solid tumors remains challenging due to the barriers within the tumor microenvironment.

View Article and Find Full Text PDF

Anaplastic thyroid cancer (ATC) is the most aggressive form of thyroid malignancy and currently lacks effective treatment options. While anti-PD1 therapy has shown remarkable clinical results in some cases, only a subset of ATC patients responds to it. Eganelisib (IPI549), a highly selective PI3Kγ inhibitor, can alleviate the tumor immunosuppressive state by reducing the proportion of M2-like tumor associated macrophages, partially overcoming patient resistance to anti-PD1 therapy and synergizing with its efficacy.

View Article and Find Full Text PDF