Publications by authors named "Pierluigi Carullo"

Regulation of mitochondrial Ca uptake is critical in cardiac adaptation to chronic stressors. Abnormalities in Ca handling, including mitochondrial uptake mechanisms, have been implicated in pathological heart hypertrophy. Enhancing mitochondrial Ca uniporter (MCU) expression has been suggested to interfere with maladaptive development of heart failure.

View Article and Find Full Text PDF

Background: Heart failure (HF) is strongly associated with inflammation. In pressure overload (PO)-induced HF, cardiac stress triggers adaptive immunity, ablation or inhibition of which blocks disease progression. We hypothesized that PO-HF might fulfill the often-used criteria of autoimmunity: if so, the associated adaptive immune response would be not only necessary but also sufficient to induce HF; it should also be possible to identify self-antigens driving the autoimmune response.

View Article and Find Full Text PDF

Background: Metabolic distress is often associated with heart failure with preserved ejection fraction (HFpEF) and represents a therapeutic challenge. Metabolism-induced systemic inflammation links comorbidities with HFpEF. How metabolic changes affect myocardial inflammation in the context of HFpEF is not known.

View Article and Find Full Text PDF

Background: Heart failure is typical in the elderly. Metabolic remodeling of cardiomyocytes underlies inexorable deterioration of cardiac function with aging: glycolysis increases at the expense of oxidative phosphorylation, causing an energy deficit contributing to impaired contractility. Better understanding of the mechanisms of this metabolic switching could be critical for reversing the condition.

View Article and Find Full Text PDF

Palladin (PALLD) belongs to the PALLD/myopalladin (MYPN)/myotilin family of actin-associated immunoglobulin-containing proteins in the sarcomeric Z-line. PALLD is ubiquitously expressed in several isoforms, and its longest 200 kDa isoform, predominantly expressed in striated muscle, shows high structural homology to MYPN. gene mutations are associated with human cardiomyopathies, whereas the role of PALLD in the heart has remained unknown, partly due to embryonic lethality of PALLD knockout mice.

View Article and Find Full Text PDF

Aims: Heart failure with reduced ejection fraction (HFrEF) is a leading cause of mortality worldwide, requiring novel therapeutic and lifestyle interventions. Metabolic alterations and energy production deficit are hallmarks and thereby promising therapeutic targets for this complex clinical syndrome. We aim to study the molecular mechanisms and effects on cardiac function in rodents with HFrEF of a designer diet in which free essential amino acids-in specifically designed percentages-substituted for protein.

View Article and Find Full Text PDF

Myopalladin (MYPN) is a striated muscle-specific immunoglobulin domain-containing protein located in the sarcomeric Z-line and I-band. gene mutations are causative for dilated (DCM), hypertrophic, and restrictive cardiomyopathy. In a yeast two-hybrid screening, MYPN was found to bind to titin in the Z-line, which was confirmed by microscale thermophoresis.

View Article and Find Full Text PDF

Aims: Increased shedding of extracellular vesicles (EVs)-small, lipid bilayer-delimited particles with a role in paracrine signalling-has been associated with human pathologies, e.g. atherosclerosis, but whether this is true for cardiac diseases is unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Supplemental Digital Content refers to additional materials that complement the main text.
  • This content can include videos, images, interactive elements, or downloadable resources.
  • It's designed to enhance understanding and engagement with the main material.
View Article and Find Full Text PDF

Reduced activation of energy metabolism increases adiposity in humans and other mammals. Thus, exploring dietary and molecular mechanisms able to improve energy metabolism is of paramount medical importance because such mechanisms can be leveraged as a therapy for obesity and related disorders. Here, we show that a designer protein-deprived diet enriched in free essential amino acids can ) promote the brown fat thermogenic program and fatty acid oxidation, ) stimulate uncoupling protein 1 (UCP1)-independent respiration in subcutaneous white fat, ) change the gut microbiota composition, and ) prevent and reverse obesity and dysregulated glucose homeostasis in multiple mouse models, prolonging the healthy life span.

View Article and Find Full Text PDF

Rationale: MicroRNAs (miRNAs, miRs) are small noncoding RNAs that modulate gene expression by negatively regulating translation of target genes. Although the role of several miRNAs in vascular smooth muscle cells (VSMCs) has been extensively characterized, the function of miRNA-128-3p (miR-128) is still unknown.

Objective: To determine if miR-128 modulates VSMC phenotype and to define the underlying mechanisms.

View Article and Find Full Text PDF
Article Synopsis
  • Inflammation significantly contributes to cardiac disease, driven primarily by macrophages and T lymphocytes, but other immune cell subsets’ roles remain unclear.
  • The study utilized single-cell RNA sequencing to analyze immune cell composition in a mouse model of heart failure, identifying various immune subsets at different disease stages and comparing results with human samples.
  • Findings revealed that beyond traditional immune players, a broader range of cells, including neutrophils, B cells, and mast cells, becomes activated during heart failure, prompting further research into these immune interactions in cardiac health.
View Article and Find Full Text PDF

Rationale: microRNAs (miRNAs) modulate gene expression by repressing translation of targeted genes. Previous work has established a role for miRNAs in regulating vascular smooth muscle cell (VSMC) activity. Whether circular RNAs are involved in the modulation of miRNA activity in VSMCs is unknown.

View Article and Find Full Text PDF

Alternative drug delivery approaches to treat cardiovascular diseases are currently under intense investigation. In this domain, the possibility to target the heart and tailor the amount of drug dose by using a combination of magnetic nanoparticles (NPs) and electromagnetic devices is a fascinating approach. Here, an electromagnetic device based on Helmholtz coils was generated for the application of low-frequency magnetic stimulations to manage drug release from biocompatible superparamagnetic Fe-hydroxyapatite NPs (FeHAs).

View Article and Find Full Text PDF

Adult vascular smooth muscle cells (VSMCs) dedifferentiate in response to extracellular cues such as vascular damage and inflammation. Dedifferentiated VSMCs are proliferative, migratory, less contractile, and can contribute to vascular repair as well as to cardiovascular pathologies such as intimal hyperplasia/restenosis in coronary artery and arterial aneurysm. We here demonstrate the role of ubiquitin-like containing PHD and RING finger domains 1 (UHRF1) as an epigenetic master regulator of VSMC plasticity.

View Article and Find Full Text PDF

Peptides are highly selective and efficacious for the treatment of cardiovascular and other diseases. However, it is currently not possible to administer peptides for cardiac-targeting therapy via a noninvasive procedure, thus representing scientific and technological challenges. We demonstrate that inhalation of small (<50 nm in diameter) biocompatible and biodegradable calcium phosphate nanoparticles (CaPs) allows for rapid translocation of CaPs from the pulmonary tree to the bloodstream and to the myocardium, where their cargo is quickly released.

View Article and Find Full Text PDF

Aims: The aim of our study was to set up a simple and reliable isolation method of living ventricular cardiomyocytes (vCMs) for molecular and biological studies.

Methods And Results: A standard technique for the retrograde perfusion of an enzymatic solution was used to isolate cardiac cells from adult mouse heart. Fluorescence-activated cell sorting (FACS) on adult murine cardiac ventricle cells was performed, comparing the intrinsic autofluorescence in the FITC channel and the forward scatter (FSC) parameter in order to isolate highly fluorescent cells.

View Article and Find Full Text PDF

It has been shown that growth hormone-releasing hormone (GHRH) reduces cardiomyocyte (CM) apoptosis, prevents ischemia/reperfusion injury, and improves cardiac function in ischemic rat hearts. However, it is still not known whether GHRH would be beneficial for life-threatening pathological conditions, like cardiac hypertrophy and heart failure (HF). Thus, we tested the myocardial therapeutic potential of GHRH stimulation in vitro and in vivo, using GHRH or its agonistic analog MR-409.

View Article and Find Full Text PDF

The mitochondrial Ca uniporter complex (MCUC) is a multimeric ion channel which, by tuning Ca influx into the mitochondrial matrix, finely regulates metabolic energy production. In the heart, this dynamic control of mitochondrial Ca uptake is fundamental for cardiomyocytes to adapt to either physiologic or pathologic stresses. Mitochondrial calcium uniporter (MCU), which is the core channel subunit of MCUC, has been shown to play a critical role in the response to β-adrenoreceptor stimulation occurring during acute exercise.

View Article and Find Full Text PDF

Background: Correct gene expression programming of the cardiomyocyte underlies the normal functioning of the heart. Alterations to this can lead to the loss of cardiac homeostasis, triggering heart dysfunction. Although the role of some histone methyltransferases in establishing the transcriptional program of postnatal cardiomyocytes during heart development has been shown, the function of this class of epigenetic enzymes is largely unexplored in the adult heart.

View Article and Find Full Text PDF

Heart failure (HF) is a leading cause of mortality. Inflammation is implicated in HF, yet clinical trials targeting pro-inflammatory cytokines in HF were unsuccessful, possibly due to redundant functions of individual cytokines. Searching for better cardiac inflammation targets, here we link T cells with HF development in a mouse model of pathological cardiac hypertrophy and in human HF patients.

View Article and Find Full Text PDF

Methylation at 5-cytosine (5-mC) is a fundamental epigenetic DNA modification associated recently with cardiac disease. In contrast, the role of 5-hydroxymethylcytosine (5-hmC)-5-mC's oxidation product-in cardiac biology and disease is unknown. Here we assess the hydroxymethylome in embryonic, neonatal, adult and hypertrophic mouse cardiomyocytes, showing that dynamic modulation of hydroxymethylated DNA is associated with specific transcriptional networks during heart development and failure.

View Article and Find Full Text PDF

Background: L-type calcium channels (LTCCs) play important roles in regulating cardiomyocyte physiology, which is governed by appropriate LTCC trafficking to and density at the cell surface. Factors influencing the expression, half-life, subcellular trafficking, and gating of LTCCs are therefore critically involved in conditions of cardiac physiology and disease.

Methods: Yeast 2-hybrid screenings, biochemical and molecular evaluations, protein interaction assays, fluorescence microscopy, structural molecular modeling, and functional studies were used to investigate the molecular mechanisms through which the LTCC Cavβ2 chaperone regulates channel density at the plasma membrane.

View Article and Find Full Text PDF

Aims: Platelets express functional interleukin-1 receptor-1 (IL-1R1) as well as a repertoire of toll-like receptors (TLRs) involved in platelet activation, platelet-leucocyte reciprocal activation, and immunopathology. IL-1R8, also known as single Ig IL-1-related receptor (SIGIRR) or TIR8, is a member of the IL-1R family that negatively regulates responses to IL-1R family members and TLRs. In the present study, we addressed the expression of IL-1R8 in platelets and megakaryocytes and its role in the control of platelet activation during inflammatory conditions and thromboembolism.

View Article and Find Full Text PDF