A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Histone Methyltransferase G9a Is Required for Cardiomyocyte Homeostasis and Hypertrophy. | LitMetric

Histone Methyltransferase G9a Is Required for Cardiomyocyte Homeostasis and Hypertrophy.

Circulation

From Department of Cardiovascular Medicine, Humanitas Research Hospital, Rozzano, Milan, Italy (R.P., S.S., C.P., F.R., P.C., N.S., M. Miragoli, G.C.); Genetic and Biomedical Research Institute, National Research Council of Italy, Rozzano, Milan, Italy (R.P., F.R., P.C., N.S., G.C.); Humanitas Unive

Published: September 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Correct gene expression programming of the cardiomyocyte underlies the normal functioning of the heart. Alterations to this can lead to the loss of cardiac homeostasis, triggering heart dysfunction. Although the role of some histone methyltransferases in establishing the transcriptional program of postnatal cardiomyocytes during heart development has been shown, the function of this class of epigenetic enzymes is largely unexplored in the adult heart. In this study, we investigated the role of G9a/Ehmt2, a histone methyltransferase that defines a repressive epigenetic signature, in defining the transcriptional program for cardiomyocyte homeostasis and cardiac hypertrophy.

Methods: We investigated the function of G9a in normal and stressed cardiomyocytes with the use of a conditional, cardiac-specific G9a knockout mouse, a specific G9a inhibitor, and high-throughput approaches for the study of the epigenome (chromatin immunoprecipitation sequencing) and transcriptome (RNA sequencing); traditional methods were used to assess cardiac function and cardiovascular disease.

Results: We found that G9a is required for cardiomyocyte homeostasis in the adult heart by mediating the repression of key genes regulating cardiomyocyte function via dimethylation of H3 lysine 9 and interaction with enhancer of zeste homolog 2, the catalytic subunit of polycomb repressive complex 2, and MEF2C-dependent gene expression by forming a complex with this transcription factor. The G9a-MEF2C complex was found to be required also for the maintenance of heterochromatin needed for the silencing of developmental genes in the adult heart. Moreover, G9a promoted cardiac hypertrophy by repressing antihypertrophic genes.

Conclusions: Taken together, our findings demonstrate that G9a orchestrates critical epigenetic changes in cardiomyocytes in physiological and pathological conditions, thereby providing novel therapeutic avenues for cardiac pathologies associated with dysregulation of these mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCULATIONAHA.117.028561DOI Listing

Publication Analysis

Top Keywords

cardiomyocyte homeostasis
12
adult heart
12
histone methyltransferase
8
g9a required
8
required cardiomyocyte
8
gene expression
8
transcriptional program
8
g9a
7
heart
6
cardiomyocyte
5

Similar Publications