Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Natural killer T (NKT) cells play important roles in adipose tissue inflammation, and thus influence the development of diet-induced obesity and insulin resistance. The interactions between cluster of differentiation (CD)1d and NKT T cell receptor are thought to be critical in this process, as demonstrated in two NKT cell-deficient mouse models-systemic CD1d gene knockout (KO) and prototypic Jα18 KO mice. The latter lacks some repertoires besides invariant (i)NKT cells due to manipulation of the Jα18 gene segment; therefore, the role of iNKT vs. variant NKT cells must be reinterpreted considering the availability of new Jα18 KO mice. NKT cells have varied roles in the development of obesity; indeed, studies have reported contradictory results depending on the mouse model, diet, and rearing conditions, all of which could affect the microbiome. In this mini-review, we discuss these points considering recent findings from our laboratory and others as well as the role of NKT cells in the development of obesity and insulin resistance based on data obtained from studies on conditional CD1d1 KO and new Jα18 KO mice generated through gene editing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6004523PMC
http://dx.doi.org/10.3389/fimmu.2018.01314DOI Listing

Publication Analysis

Top Keywords

nkt cells
16
development obesity
12
obesity insulin
12
insulin resistance
12
jα18 mice
12
natural killer
8
cells development
8
cells
6
nkt
6
role natural
4

Similar Publications

This study evaluated immune cell subset variations in immune thrombocytopenia (ITP) by comparing frequencies at diagnosis with controls and assessing changes post-therapy. A single-center prospective observational study enrolled 25 untreated acute and chronic ITP patients and 20 matched controls from January 2018 to January 2019. Immune cell subsets, including CD4+, CD8+, NK cells, NK-T cells, and T regulatory cells (Tregs), were analyzed using flow cytometric immunophenotyping.

View Article and Find Full Text PDF

Immunometabolism, the intersection of cellular metabolism and immune function, has revolutionized our understanding of T cell biology. Changes in cellular metabolism help guide the development of thymocytes and the transition of T cells from naive to effector, memory and tissue-resident states. Innate-like T cells are a unique group of T cells with special characteristics.

View Article and Find Full Text PDF

Background: Comorbidities and genetic correlations between gastrointestinal tract diseases and psychiatric disorders have been widely reported, but the underlying intrinsic link between Alzheimer's disease (AD) and inflammatory bowel disease (IBD) is not adequately understood.

Methods: To identify pathogenic cell types of AD and IBD and explore their shared genetic architecture, we developed Pathogenic Cell types and shared Genetic Loci (PCGL) framework, which studied AD and IBD and its two subtypes of ulcerative colitis (UC) and Crohn's disease (CD).

Results: We found that monocytes and CD8 T cells were the enriched pathogenic cell types of AD and IBDs, respectively.

View Article and Find Full Text PDF

Introduction: We attempted to perform a comprehensive bioinformatics analyses on osteoarthritis (OA) based on the NKT-related genes and explore the clinical related critical genes.

Methods: Differentially expressed genes (DEGs) and NKT-related genes from WGCNA were obtained using the dataset GSE114007, followed by intersection analysis to obtain NKT-related DEGs. Lasso regression, support vector machine and random forest were performed to screen feature genes, followed by verification with ROC curve, and nomogram model.

View Article and Find Full Text PDF

Multiplex engineering using microRNA-mediated gene silencing in CAR T cells.

Front Immunol

September 2025

Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.

Background: Multiplex gene-edited chimeric antigen receptor (CAR) T-cell therapies face significant challenges, including potential oncogenic risks associated with double-strand DNA breaks. Targeted microRNAs (miRNAs) may provide a safer, functional, and tunable alternative for gene silencing without the need for DNA editing.

Methods: As a proof of concept for multiplex gene silencing, we employed an optimized miRNA backbone and gene architecture to silence T-cell receptor (TCR) and major histocompatibility complex class I (MHC-I) in mesothelin-directed CAR (M5CAR) T cells.

View Article and Find Full Text PDF