Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The accumulation of atrazine in lake sediments leads to persistent contamination, which may damage the succeeding submerged plants and create potential threats to the lake eco-environment. In this study, the degradation characteristics of atrazine and its detoxication by Myriophyllum spicatum and the associated bacterial community in lake sediments were evaluated. M. spicatum absorbed more than 18-fold the amount of atrazine in sediments and degraded atrazine to hydroxyatrazine (HA), deelthylatrazine (DEA), didealkylatrazine (DDA), cyanuric acid (CYA) and biuret. The formation of biuret suggested for the first time, the ring opening of atrazine in an aquatic plant. The residual rate of atrazine was 6.5 ± 2.0% in M. spicatum-grown sediment, which was significantly lower than the 18.0 ± 2.5% in unplanted sediments on day 60 (P < 0.05). Moreover, on day 15, the increase in contents of HA, CYA and biuret in M. spicatum-grown sediment indicated that M. spicatum promoted the degradation and removal of atrazine following rapid dechlorination. The colonization of M. spicatum and the addition of atrazine altered the structure of the dominant bacterial community in sediments, including effects on Nitrospirae and Acidobacteria. Based on the maximum amount among the genera of atrazine-degrading bacteria, Acetobacter was most likely responsible for the degradation of atrazine. Our findings reveal the natural attenuation of atrazine by aquatic organisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2018.06.055DOI Listing

Publication Analysis

Top Keywords

atrazine
8
myriophyllum spicatum
8
lake sediments
8
phytoextraction biodegradation
4
biodegradation atrazine
4
atrazine myriophyllum
4
spicatum evaluation
4
evaluation bacterial
4
bacterial communities
4
communities involved
4

Similar Publications

This study investigated the degradation of tetracycline (TCN) antibiotic catalytic activation of periodate (PI, IO ) using a novel composite catalyst composed of green-synthesized magnetite nanoparticles supported on water lettuce-derived biochar (MWLB). Characterization results revealed that the magnetic biochar possessed a porous structure, abundant surface functional groups, and high carbon and iron contents. Compared to conventional oxidants such as persulfate, hydrogen peroxide, and peroxymonosulfate, the PI-activated system demonstrated superior degradation efficiency.

View Article and Find Full Text PDF

Effects of short-term exposure to environmentally relevant pesticides mixture on morphological alterations, oxidative-nitrative stress biomarkers, cellular apoptosis, and antioxidant expression in kidneys of goldfish.

Comp Biochem Physiol C Toxicol Pharmacol

September 2025

School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA; School of Integrated Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA. Electronic address:

Chemical stressors are pervasive, affecting both terrestrial and aquatic environments. The continual influx of these toxins is damaging ecosystems and the organisms that inhabit them. The abundance of environmental toxins makes aquatic habitats inhospitable for aquatic life.

View Article and Find Full Text PDF

An ultrasensitive electrode modified with a molecularly imprinted PEDOT-TiO nanocomposite for voltammetric atrazine detection in environmental samples.

Talanta

August 2025

Department of Chemistry, Faculty of Natural and Exact Sciences, Universidad de Oriente, Av. Patricio Lumumba, Santiago de Cuba, 90100, Cuba.

Molecularly imprinted polymers (MIPs) have been studied to be used as a platform for electrochemical sensing devices, with special regard to the determination of pesticides. Due to MIP applicability, in the present research, we develop a glassy carbon electrode (GCE) modified with a molecularly imprinted nanocomposite based on the doping of poly(3,4-ethylenedioxythiophene) (PEDOT) with chitosan (Chit) and TiO nanoparticles for sensing atrazine in environmental samples. The construction of the MIP nanocomposite was divided into four parts, which include the chitosan-TiO layer formation by simple drop-casting on the GCE, the doping and electropolymerization of the Chit+TiO+PEDOT layer, cavity formation, and elution.

View Article and Find Full Text PDF

Purpose: The Naseri Artificial Wetland was created by the discharge of agricultural drainage water, including effluent from the sugarcane development project. The continuous inflow of drainage water from the sugarcane development units has altered the natural regime of the wetland. Considering the high probability of herbicides entering agricultural runoff, this study was conducted to identify atrazine and to assess the health risks of it in this wetland.

View Article and Find Full Text PDF

Pesticides detected in two urban areas have implications for local butterfly conservation.

Environ Toxicol Chem

September 2025

Department of Biology, Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, United States.

Human-managed green spaces in urban landscapes have become important focal points for insect conservation, partly because of the desirable insect diversity that these areas support, and also because exposure to nature is important for human health and wellbeing. An important issue in insect conservation is the extent to which non-pest insects are impacted by pesticide applications, but this has been relatively less examined outside of agricultural landscapes. Here, we investigated green spaces, including parks and private yards, in two urban areas (Sacramento, California, and Albuquerque, New Mexico), asking if larval host plants for butterflies in the two regions contained herbicides, insecticides, and fungicides.

View Article and Find Full Text PDF