Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

B cell receptor (BCR) signalling has emerged as a therapeutic target in B cell lymphomas, but inhibiting this pathway in diffuse large B cell lymphoma (DLBCL) has benefited only a subset of patients. Gene expression profiling identified two major subtypes of DLBCL, known as germinal centre B cell-like and activated B cell-like (ABC), that show poor outcomes after immunochemotherapy in ABC. Autoantigens drive BCR-dependent activation of NF-κB in ABC DLBCL through a kinase signalling cascade of SYK, BTK and PKCβ to promote the assembly of the CARD11-BCL10-MALT1 adaptor complex, which recruits and activates IκB kinase. Genome sequencing revealed gain-of-function mutations that target the CD79A and CD79B BCR subunits and the Toll-like receptor signalling adaptor MYD88, with MYD88(L265P) being the most prevalent isoform. In a clinical trial, the BTK inhibitor ibrutinib produced responses in 37% of cases of ABC. The most striking response rate (80%) was observed in tumours with both CD79B and MYD88(L265P) mutations, but how these mutations cooperate to promote dependence on BCR signalling remains unclear. Here we used genome-wide CRISPR-Cas9 screening and functional proteomics to determine the molecular basis of exceptional clinical responses to ibrutinib. We discovered a new mode of oncogenic BCR signalling in ibrutinib-responsive cell lines and biopsies, coordinated by a multiprotein supercomplex formed by MYD88, TLR9 and the BCR (hereafter termed the My-T-BCR supercomplex). The My-T-BCR supercomplex co-localizes with mTOR on endolysosomes, where it drives pro-survival NF-κB and mTOR signalling. Inhibitors of BCR and mTOR signalling cooperatively decreased the formation and function of the My-T-BCR supercomplex, providing mechanistic insight into their synergistic toxicity for My-T-BCR DLBCL cells. My-T-BCR supercomplexes characterized ibrutinib-responsive malignancies and distinguished ibrutinib responders from non-responders. Our data provide a framework for the rational design of oncogenic signalling inhibitors in molecularly defined subsets of DLBCL.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6201842PMC
http://dx.doi.org/10.1038/s41586-018-0290-0DOI Listing

Publication Analysis

Top Keywords

bcr signalling
12
my-t-bcr supercomplex
12
signalling
9
multiprotein supercomplex
8
oncogenic signalling
8
mtor signalling
8
signalling inhibitors
8
bcr
6
dlbcl
5
my-t-bcr
5

Similar Publications

Chronic myeloid leukemia (CML), a myeloproliferative neoplasm, is characterized by the fusion gene, which results in constitutive tyrosine kinase activity. While tyrosine kinase inhibitors (TKIs) have significantly improved CML outcomes, resistance and the persistence of leukemic stem cells remain major clinical challenges. Curcumin, a natural polyphenol derived from , has demonstrated potential anticancer properties.

View Article and Find Full Text PDF

Toll-like receptors (TLRs) are essential components of the innate immune system, functioning as pattern recognition receptors (PRRs) to detect pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). In hematological malignancies, particularly myelodysplastic syndromes (MDS), acute myeloid leukemia (AML), and chronic myeloid leukemia (CML), TLRs influence inflammation, disease progression, and therapeutic response. This review highlights the prognostic relevance of TLR expression, the role of the MyD88 signaling pathway in clonal evolution, and the dual nature of TLR-mediated immune responses, either promoting antitumor activity or contributing to leukemogenesis.

View Article and Find Full Text PDF

Chronic myeloid leukaemia (CML) accounts for 2% of leukaemias in children and 9% in adolescents. While the BCR::ABL1 fusion gene remains a hallmark across all age groups, emerging evidence suggests that paediatric CML exhibits unique biological and clinical characteristics compared to its adult counterpart. Children often present with more aggressive clinical features and show distinct treatment response patterns.

View Article and Find Full Text PDF

Immunoglobulins (IGs) made by chronic lymphocytic leukemia (CLL) B cells are unique in that they bind themselves (homo-dimerize). This interaction leads to signal transduction with functional consequences that depend on the affinity of homo-dimerization. We have studied the antigen-binding properties of the IGs from a subset of patients with CLL (Subset #4) that homo-dimerize at high affinity.

View Article and Find Full Text PDF

New insights to B cell tolerance involving the mechanosensitive ion channel Piezo1.

BMB Rep

September 2025

Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Institute for Immunology and Immunological Diseases, Yonsei Uni

B cell tolerance is critical for preventing autoimmunity, yet the mechanisms by which B cells discriminate self from non-self antigens remain incompletely understood. While early findings emphasize the role of classical antigen-mediated BCR signaling strength by varying antigen formats, emerging evidence highlights the importance of mechanical cues during antigen recognition. This review explores how mechanosensitive ion channels, particularly Piezo1, contribute to B cell activation and tolerance by integrating physical forces at the immune synapse.

View Article and Find Full Text PDF