Interleukin-2 (IL-2) regulates immune homeostasis by fine-tuning the balance between effector and regulatory T (T) cells. To identify regulators of IL-2 signaling, we performed genome-wide CRISPR-knockout screening in IL-2-dependent cells derived from a patient with adult T cell leukemia (ATL) and found enrichment of single guide RNAs targeting , which encodes B lymphocyte-induced maturation protein 1 (BLIMP1). BLIMP1 inhibits IL-2 production by T cells; however, its role in IL-2 signaling remains unknown.
View Article and Find Full Text PDFFollicular lymphoma (FL), marginal zone lymphoma (MZL), chronic lymphocytic leukaemia (CLL) and mantle cell lymphoma (MCL) are characterized by a continuous incidence of relapse and increasing resistance to therapy. Novel immunotherapy approaches are needed. Magrolimab, a CD47-blocking antibody, disrupts CD47:SIRPα-mediated antiphagocytic signalling.
View Article and Find Full Text PDFMethods Mol Biol
October 2024
Genome-wide screens are a powerful technique to dissect the complex network of genes regulating diverse cellular phenotypes. The recent adaptation of the CRISPR-Cas9 system for genome engineering has revolutionized functional genomic screening. Here, we present protocols used to introduce Cas9 into human lymphoma cell lines, produce high-titer lentivirus of a genome-wide sgRNA library, transduce and culture cells during the screen, select cells with a specified phenotype, isolate genomic DNA, and prepare a custom library for next-generation sequencing.
View Article and Find Full Text PDFNat Immunol
September 2024
Multiple myeloma (MM) is an incurable plasma cell malignancy that exploits transcriptional networks driven by IRF4. We employ a multi-omics approach to discover IRF4 vulnerabilities, integrating functional genomics screening, spatial proteomics, and global chromatin mapping. ARID1A, a member of the SWI/SNF chromatin remodeling complex, is required for IRF4 expression and functionally associates with IRF4 protein on chromatin.
View Article and Find Full Text PDFBackground: The identification of oncogenic mutations in diffuse large B-cell lymphoma (DLBCL) has led to the development of drugs that target essential survival pathways, but whether targeting multiple survival pathways may be curative in DLBCL is unknown.
Methods: We performed a single-center, phase 1b-2 study of a regimen of venetoclax, ibrutinib, prednisone, obinutuzumab, and lenalidomide (ViPOR) in relapsed or refractory DLBCL. In phase 1b, which included patients with DLBCL and indolent lymphomas, four dose levels of venetoclax were evaluated to identify the recommended phase 2 dose, with fixed doses of the other four drugs.
Glucocorticoids have been used for decades to treat lymphomas without an established mechanism of action. Using functional genomic, proteomic, and chemical screens, we discover that glucocorticoids inhibit oncogenic signaling by the B cell receptor (BCR), a recurrent feature of aggressive B cell malignancies, including diffuse large B cell lymphoma and Burkitt lymphoma. Glucocorticoids induce the glucocorticoid receptor (GR) to directly transactivate genes encoding negative regulators of BCR stability (LAPTM5; KLHL14) and the PI3 kinase pathway (INPP5D; DDIT4).
View Article and Find Full Text PDFCancer Discov
September 2024
Polatuzumab vedotin (Pola-V) is an antibody-drug conjugate directed to the CD79B subunit of the B-cell receptor (BCR). When combined with conventional immunochemotherapy, Pola-V improves outcomes in diffuse large B-cell lymphoma (DLBCL). To identify determinants of Pola-V sensitivity, we used CRISPR-Cas9 screening for genes that modulated Pola-V toxicity for lymphomas or the surface expression of its target, CD79B.
View Article and Find Full Text PDFDiffuse large B-cell lymphoma (DLBCL) encompasses a diverse spectrum of aggressive B-cell lymphomas with remarkable genetic heterogeneity and myriad clinical presentations. Multiplatform genomic analyses of DLBCL have identified oncogenic drivers within genetic subtypes that allow for pathologic subclassification of tumors into discrete entities with shared immunophenotypic, genetic, and clinical features. Robust classification of lymphoid tumors establishes a foundation for precision medicine and enables the identification of novel therapeutic vulnerabilities within biologically homogeneous entities.
View Article and Find Full Text PDFDiffuse large B cell lymphoma (DLBCL) is an aggressive, profoundly heterogeneous cancer, presenting a challenge for precision medicine. Bruton's tyrosine kinase (BTK) inhibitors block B cell receptor (BCR) signaling and are particularly effective in certain molecular subtypes of DLBCL that rely on chronic active BCR signaling to promote oncogenic NF-κB. The MCD genetic subtype, which often acquires mutations in the BCR subunit, CD79B, and in the innate immune adapter, MYD88, typically resists chemotherapy but responds exceptionally to BTK inhibitors.
View Article and Find Full Text PDFUnlabelled: Diffuse large B-cell lymphoma (DLBCL) can be subdivided into the activated B-cell (ABC) and germinal center B cell-like (GCB) subtypes. Self-antigen engagement of B-cell receptors (BCR) in ABC tumors induces their clustering, thereby initiating chronic active signaling and activation of NF-κB and PI3 kinase. Constitutive BCR signaling is essential in some GCB tumors but primarily activates PI3 kinase.
View Article and Find Full Text PDFBCL10, a key activator of NF-κB downstream of oncogenic B-cell receptor signaling, is mutated in nearly 40% of the BN2/C1 genetic subtype of diffuse large B-cell lymphoma, but how these mutations function to augment signaling and their relevance to targeted precision medicine agents remains unclear. In this issue of Cancer Discovery, Xia and colleagues demonstrate distinct mechanisms of oncogenic signaling regulation and therapeutic vulnerabilities among different recurrent BCL10 mutations. See related article by Xia et al.
View Article and Find Full Text PDFThe integrin lymphocyte function-associated antigen 1 (LFA-1) helps to coordinate the migration, adhesion, and activation of T cells through interactions with intercellular adhesion molecule 1 (ICAM-1) and ICAM-2. LFA-1 is activated during the engagement of chemokine receptors and the T cell receptor (TCR) through inside-out signaling, a process that is partially mediated by phosphoinositide 3-kinase (PI3K) and its product phosphatidylinositol 3,4,5-trisphosphate (PIP). To evaluate potential roles of PI3K in LFA-1 activation, we designed a library of CRISPR/single guide RNAs targeting known and potential PIP-binding proteins and screened for effects on the ability of primary mouse T cells to bind to ICAM-1.
View Article and Find Full Text PDFT follicular helper (Tfh) cells provide signals to initiate and maintain the germinal center (GC) reaction and are crucial for the generation of robust, long-lived antibody responses, but how the GC microenvironment affects Tfh cells is not well understood. Here we develop an in vivo T cell-intrinsic CRISPR-knockout screen to evaluate Tfh and Th1 cells in an acute viral infection model to identify regulators of Tfh cells in their physiological setting. Using a screen of druggable-targets, alongside genetic, transcriptomic and cellular analyses, we identify a function of HIF-1α in suppressing mTORC1-mediated and Myc-related pathways, and provide evidence that VHL-mediated degradation of HIF-1α is required for Tfh development; an expanded in vivo CRISPR screen reveals multiple components of these pathways that regulate Tfh versus Th1 cells, including signaling molecules, cell-cycle regulators, nutrient transporters, metabolic enzymes and autophagy mediators.
View Article and Find Full Text PDFBurkitt lymphoma (BL) is an aggressive lymphoma type that is currently treated by intensive chemoimmunotherapy. Despite the favorable clinical outcome for most patients with BL, chemotherapy-related toxicity and disease relapse remain major clinical challenges, emphasizing the need for innovative therapies. Using genome-scale CRISPR-Cas9 screens, we identified B-cell receptor (BCR) signaling, specific transcriptional regulators, and one-carbon metabolism as vulnerabilities in BL.
View Article and Find Full Text PDFIn this issue of , Gandhi et al studied 91 cases of primary diffuse large B-cell lymphoma (DLBCL) of the central nervous system (CNS) (PCNSL) and compared the biologic features of tumors associated with Epstein-Barr virus (EBV) to tumors that are EBV using digital gene expression signatures and customized hybrid-capture targeted sequencing panels.
View Article and Find Full Text PDFFas is highly expressed on germinal center (GC) B cells, and mutations of FAS have been reported in diffuse large B cell lymphoma (DLBCL). Although GC-derived DLBCL has better overall outcomes than other DLBCL types, some cases are refractory, and the molecular basis for this is often unknown. We show that Fas is a strong cell-intrinsic regulator of GC B cells that promotes cell death in the light zone, likely via T follicular helper (Tfh) cell-derived Fas ligand.
View Article and Find Full Text PDF