98%
921
2 minutes
20
Extensive production of nanomaterials of various properties needs to be coupled with rapid toxicity testing in order to provide information about their potential risks to the environment and human health. Miniaturization of toxicity tests may accelerate economical testing of nanomaterials, but is not a common practice. We describe a case study to miniaturize a commonly used toxicity test with plant duckweed Lemna minor. 6-well, 12-well and 24-well culture plates were used to assess their potential use for the duckweed toxicity test with potassium chloride as reference material. The results were compared to the standard test design using 100 mL glass beakers. The comparison showed that the best agreement was with the 6-well vessels. This set-up was further used for toxicity testing of zinc oxide nanoparticles (ZnO NP) and zinc chloride. Zinc was not adsorbed onto either glass or plastic walls of the miniaturized system. We assume that in both vessels a fast agglomeration and settling of ZnO NP took place. Linear regression and statistical testing indicated a good correlation between the toxicity results obtained in the standard test and miniaturized 6-well vessels. The miniaturization of the test system for assessing the biological effect of nanomaterials on Lemna minor could become an appropriate alternative to the traditionally used high volume vessels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nbt.2018.06.002 | DOI Listing |
Front Pharmacol
August 2025
General Surgery Department Three, Gansu Province Central Hospital, Lanzhou, China.
Fast and early detection of low-dose chemical toxicity is a critical unmet need in toxicology and human health, as conventional 2D culture models often fail to capture subtle cellular responses induced by sub-toxic exposures. Here, we present a bioengineered three-dimensional (3D) electrospun nanofibrous scaffold composed of polycaprolactone that enhances chromatin accessibility and primes fibroblasts for improved sensitivity to low-dose chemical stimuli in a short period. The scaffold mimics the extracellular matrix, providing topographical cues that reduce cytoskeletal tension and promote nuclear deformation, thereby increasing chromatin openness.
View Article and Find Full Text PDFVet Dermatol
September 2025
Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA.
Background: The antibacterial efficacy of chlorhexidine shampoo is directly affected by formulation and bathing factors.
Hypothesis/objective: To evaluate the in vitro antibacterial efficacy of chlorhexidine-containing shampoos at various dilutions and to compare their lathering ability.
Animals: No animals were utilised in this study.
Biotechnol J
September 2025
Department of Biochemical Engineering, University College London, London, UK.
Chimeric antigen receptor T-cell (CAR-T) therapies have demonstrated clinical efficacy in treating haematological malignancies, resulting in multiple regulatory approvals. However, there is a need for robust manufacturing platforms and the use of GMP-aligned reagents to meet the clinical and commercial demands. This study investigates the impact of serum/xeno-free medium (SXFM) and cytokine supplementation on CAR-T cell production in static and agitated culture systems, using 24-well plate G-Rex vessels and 500 mL stirred tank bioreactors (STRs), respectively.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
September 2025
Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
In the current in vitro experiment, we fabricated and characterized placenta/platelet-rich plasma (PL/Pt) composite scaffolds and evaluated their effect on differentiating adipose stem cells (ASCs) into insulin-producing cells (IPCs) in vitro. The human placenta (PL) was decellularized (dPL), characterized, and digested in pepsin. PRP was extracted using a two-step centrifugation process and then freeze-dried.
View Article and Find Full Text PDFBiomater Sci
September 2025
Biotechnology Science and Engineering Program, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
B cells are critical components of the adaptive immune system that proliferate and differentiate within the secondary lymphoid organs upon recognition of antigens and engagement of T cells. Traditional two-dimensional (2D) cell cultures fall short of replicating the intricate structures and dynamic evolution of three-dimensional (3D) environments found in lymphoid organs, prompting the development of more physiologically pertinent models. Our approach employs -hexanoyl glycol chitosan (HGC) coated ultra-low attachment (ULA) lattice plates to cultivate a 3D co-culture of CD40L-expressing MS5 stromal cells and naïve B cells derived from the peripheral blood mononuclear cells (PBMCs) of healthy human donors.
View Article and Find Full Text PDF