98%
921
2 minutes
20
Mitochondrial Lon is a multi-function matrix protease with chaperone activity. However, little literature has been undertaken into detailed investigations on how Lon regulates apoptosis through its chaperone activity. Accumulating evidences indicate that various stresses induce transportation of p53 to mitochondria and activate apoptosis in a transcription-independent manner. Here we found that increased Lon interacts with p53 in mitochondrial matrix and restrains the apoptosis induced by p53 under oxidative stress by rescuing the loss of mitochondrial membrane potential (Δψm) and the release of cytochrome C and SMAC/Diablo. Increased chaperone Lon hampers the transcription-dependent apoptotic function of p53 by reducing the mRNA expression of p53 target genes. The ATPase mutant (K529R) of chaperone Lon decreases the interaction with p53 and fails to inhibit apoptosis. Furthermore, the chaperone activity of Lon is important for mitochondrial p53 accumulation in an mtHsp70-dependent manner, which is also important to prevent the cytosolic distribution of p53 from proteasome-dependent degradation. These results indicate that the chaperone activity of Lon is important to bind with mitochondrial p53 by which increased Lon suppresses the apoptotic function of p53 under oxidative stress. Furthermore, mitochondrial Lon-mtHsp70 increases the stability/level of p53 through trafficking and retaining p53 in mitochondrial matrix and preventing the pool of cytosolic p53 from proteasome-dependent degradation in vitro and in clinic.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5998145 | PMC |
http://dx.doi.org/10.1038/s41419-018-0730-7 | DOI Listing |
FEBS J
September 2025
Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Japan.
Adenosylcobalamin-dependent ethanolamine ammonia-lyase (EAL) undergoes irreversible inactivation when incubated in the absence of substrate or in the presence of certain substrates or pseudosubstrates. We have previously identified Escherichia coli EutA as an EAL-reactivase (or reactivating factor). Herein, untagged and tagged EutAs were purified to homogeneity.
View Article and Find Full Text PDFJ Microbiol Biotechnol
September 2025
Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.
Shiga toxin (Stx) is a virulence factor produced by serotype 1 and Stx-producing (STEC). It causes severe renal damage, leading to hemolytic uremic syndrome (HUS). The main target organ of Stx, the kidney, plays a role in maintaining water homeostasis in the body by increasing an osmotic gradient from the cortex to the medulla.
View Article and Find Full Text PDFEur J Pharmacol
September 2025
Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran. Electronic address:
Cancer is a leading cause of global mortality, significantly impacted by treatment resistance and the toxicity of conventional therapies like chemotherapy and radiation. Recent studies show that anastasis-the recovery of cells from near-death states-as a key mechanism promoting cancer relapse and apoptosis resistance. During anastasis, stress-induced caspase activation allows cancer cells to survive, increase chemoresistance, and enhance metastatic potential.
View Article and Find Full Text PDFACS Chem Neurosci
September 2025
Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.
The development of drugs for Alzheimer's disease, which accounts for over half of all dementia cases, remains challenging. Amyloid β 1-42 (Aβ42) is widely recognized for its deposition in the brains of patients with Alzheimer's disease. Furthermore, Aβ42-induced cell toxicity likely plays a role in disease onset.
View Article and Find Full Text PDFTargeted regulation of 70 kilodalton Heat Shock Protein (HSP70) chaperones, particularly the essential cognate heat shock protein (HSC70) and its ortholog, HSP-1, may hold the key to improving cellular proteostasis and ameliorating aging-associated conditions linked to protein misfolding and aggregation. However, tools to selectively modulate HSP70 chaperone activity remain elusive. In this study, we pioneer the development of two novel nanobodies, B12 and H5, which specifically bind to both recombinant and endogenous HSP-1.
View Article and Find Full Text PDF