Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this paper, we present a direct method to measure surface wave attenuation arising from both ohmic and coupling losses using our recently developed phase spatial light modulator (phase-SLM) based confocal surface plasmon microscope. The measurement is carried out in the far-field using a phase-SLM to impose an artificial surface wave phase profile in the back focal plane (BFP) of a microscope objective. In other words, we effectively provide an artificially engineered backward surface wave by modulating the Goos Hänchen (GH) phase shift of the surface wave. Such waves with opposing phase and group velocities are well known in acoustics and electromagnetic metamaterials but usually require structured or layered surfaces, here the effective wave is produced externally in the microscope illumination path. Key features of the technique developed here are that it (i) is self-calibrating and (ii) can distinguish between attenuation arising from ohmic loss (k″ ) and coupling (reradiation) loss (k″ ). This latter feature has not been achieved with existing methods. In addition to providing a unique measurement the measurement occurs of over a localized region of a few microns. The results were then validated against the surface plasmons (SP) dip measurement in the BFP and a theoretical model based on a simplified Green's function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5986803PMC
http://dx.doi.org/10.1038/s41598-018-26424-2DOI Listing

Publication Analysis

Top Keywords

surface wave
20
confocal surface
8
phase shift
8
attenuation arising
8
arising ohmic
8
loss k″
8
surface
7
wave
6
measurement
5
phase
5

Similar Publications

Introduction: This study explores high-impedance surface (HIS) metamaterial shields for enhancing the transmit field in whole-body MRI at 7 T. We studied the possibility of placing a metamaterial layer between the gradient coil and bore liner using electromagnetic simulations to evaluate B and SAR efficiency across different impedances.

Materials And Methods: Simulations were performed in three stages, first metamaterial design and characterization, then single-element dipole simulations with a homogenous phantom, and finally, simulations including a four-element arrays with a virtual body model, including the whole scanner geometry.

View Article and Find Full Text PDF

Meniscus-Driven Modulation of Surface Wave Transmission across a Barrier.

Phys Rev Lett

August 2025

University of Mississippi, National Center for Physical Acoustics and Department of Physics and Astronomy, University, Mississippi 38677, USA.

Meniscus oscillations at interfaces between liquids, solids, and air significantly impact fluid dynamics and control. While idealized models exist, experimental data on capillary-gravity wave scattering involving meniscus effects remain limited. In this Letter, we systematically measured wave transmission past a surface-piercing barrier, focusing on meniscus effects.

View Article and Find Full Text PDF

Sectionally nonlinearly functionally graded (SNFG) structures with triply periodic minimal surface (TPMS) are considered ideal for bone implants because they closely replicate the hierarchical, anisotropic, and porous architecture of natural bone. The smooth gradient in material distribution allows for optimal load transfer, reduced stress shielding, and enhanced bone ingrowth, while TPMS provides high mechanical strength-to-weight ratio and interconnected porosity for vascularization and tissue integration. Wherein, The SNFG structure contains sections with thickness that varies nonlinearly along their length in different patterns.

View Article and Find Full Text PDF

This study aims to tackle the tracking control problem of multiple unmanned surface vessels (USVs). It considers the impact of connectivity-hybrid cyber-attacks in the networked level, and wave-induced disturbances, as well as severe and nonsevere unified modeling rudder angle faults in the physical level. To do this, the study establishes USV models, taking into account actuator fault and cyber-attack modeling.

View Article and Find Full Text PDF

Aircraft confronting harsh meteorological conditions and radar detection environments during high-altitude flights face significant risks, which can threaten flight safety. This study designs and fabricates a novel Jerusalem cross-inspired Frequency Selective Surface (FSS). Initially, rGO powder with an optimized reduction degree is synthesized as the conductive filler.

View Article and Find Full Text PDF