Fluorescent magnetosomes for controlled and repetitive drug release under the application of an alternating magnetic field under conditions of limited temperature increase (<2.5 °C).

Nanoscale

Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD, Institut de Minéralogie, de Physique des Matériaux et de, Cosmochimie, IMPMC, 75005 Paris, France.

Published: June 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Therapeutic substances bound to nanoparticles have been shown to dissociate following excitation by various external sources of energies or chemical disturbance, resulting in controllable and efficient antitumor activity. Bioconjugation is used to produce magnetosomes associated with Rhodamine B (RhB), whose fluorescence is partially quenched by the presence of iron oxide and becomes strongly enhanced when RhB dissociates from the magnetosomes under the application of an alternating magnetic field. This novel approach enables the release of a RhB model molecule while monitoring the mechanism by fluorescence. The dissociation mechanism of RhB is highlighted by exposing a suspension of fluorescent magnetosomes to an alternating magnetic field, by magnetically isolating the supernatant of this suspension, and by showing fluorescence enhancement of the supernatant. Furthermore, to approach in vivo conditions, fluorescent magnetosomes are mixed with tissue or introduced in the mouse brain and exposed to the alternating magnetic field. Most interestingly, the percentages of RhB dissociation measured at the beginning of magnetic excitation (ΔR/δt) or 600 seconds afterwards (R600 s) are ΔR/δt ∼ 0.13% and R600 s ∼ 50% under conditions of limited temperature increases (<2.5 °C), larger values than those of ΔR/δt ∼ 0.02-0.11% and R600 s ∼ 13%, estimated for temperature increase larger than 2.5 °C. Furthermore, when magnetic excitations are repeated two to five times, the temperature increase becomes undetectable, but RhB dissociation continues to occur up to the fifth magnetic excitation. Since high heating temperatures may be damaging for tissues, this study paves the way towards the development of a safe theranostic dissociating nano-probe operating under conditions of limited temperature increase.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8nr02164cDOI Listing

Publication Analysis

Top Keywords

fluorescent magnetosomes
4
magnetosomes controlled
4
controlled repetitive
4
repetitive drug
4
drug release
4
release application
4
application alternating
4
alternating magnetic
4
magnetic field
4
field conditions
4

Similar Publications

The large recruitment of tumor-associated macrophages and low exposure of tumor-associated antigens in tumor microenvironment have severely suppress the efficacy of anti-tumor immunotherapy. Herein, biosynthesized magnetosome (Mag) from bacteria was loaded with photothermal/photodynamic agent/near infrared (NIR) fluorescence dye (IR780) and further modified with lipid-PEG-c(RGDyK) through biomembrane, forming Mag for fluorescence imaging, magnetic resonance imaging, immunotherapy and photodynamic/photothermal therapy. After intravenous injection into B16F10 tumor-bearing mice, Mag could efficiently accumulate in tumor tissues based on near infrared (NIR) fluorescence and magnetic resonance dual-modality imaging, and repolarize tumor-associated macrophages (TAMs) from M2 phenotype to M1 phenotype, significantly improving the effect of tumor immunotherapy.

View Article and Find Full Text PDF

A rapid and sensitive sandwich assay for the detection of Alicyclobacillus acidoterrestris in apple juice based on magnetosome immunomagnetic separation combined with quantum dots immunoassay technology.

Food Chem

February 2025

College of Food Science and Technology, Northwest University, Xi'an 710069, China; College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China. Electronic address:

The contamination of apple juice by Alicyclobacillus acidoterrestris (A. acidoterrestris) can cause significant economic losses. Therefore, developing a rapid and sensitive method for detecting A.

View Article and Find Full Text PDF

To detect cellular activities deep within the body using magnetic resonance platforms, magnetosomes are the ideal model of genetically-encoded nanoparticles. These membrane-bound iron biominerals produced by magnetotactic bacteria are highly regulated by approximately 30 genes; however, the number of magnetosome genes that are essential and/or constitute the root structure upon which biominerals form is largely undefined. To examine the possibility that key magnetosome genes may interact in a foreign environment, we expressed mamI and mamL as fluorescent fusion proteins in mammalian cells.

View Article and Find Full Text PDF

Investigation of pharmacokinetics and immunogenicity of magnetosomes.

Artif Cells Nanomed Biotechnol

December 2024

Marine Biotechnology and Bioproducts lab, Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India.

Magnetosomes are iron oxide or iron sulphide nano-sized particles surrounded by a lipid bilayer synthesised by a group of bacteria known as magnetotactic bacteria (MTB). Magnetosomes have become a promising candidate for biomedical applications and could be potentially used as a drug-carrier. However, pharmacokinetics and immunogenicity of the magnetosomes have not been understood yet which preclude its clinical applications.

View Article and Find Full Text PDF

Boosting SARS-CoV-2 Enrichment with Ultrasmall Immunomagnetic Beads Featuring Superior Magnetic Moment.

Anal Chem

August 2023

High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China.

The isolation and enrichment efficiency of SARS-CoV-2 virus in complex biological environments is often relatively low, presenting challenges in direct detection and an increased risk of false negatives, particularly during the early stages of infection. To address this issue, we have developed a novel approach using ultrasmall magnetosome-like nanoparticles (≤10 nm) synthesized via biomimetic mineralization of the Mms6 protein derived from magnetotactic bacteria. These nanoparticles are surface-functionalized with hydrophilic carboxylated polyethylene glycol (mPEG2000-COOH) to enhance water solubility and monodispersity.

View Article and Find Full Text PDF