98%
921
2 minutes
20
The aerial robot presented here for the first time was based on a quadrotor structure, which is capable of unique morphing performances based on an actuated elastic mechanism. Like birds, which are able to negotiate narrow apertures despite their relatively large wingspan, our Quad-Morphing robot was able to pass through a narrow gap at a high forward speed of 2.5 m.s by swiftly folding up the structure supporting its propellers. A control strategy was developed to deal with the loss of controllability on the roll axis resulting from the folding process, while keeping the robot stable until it has crossed the gap. In addition, a complete recovery procedure was also implemented to stabilize the robot after the unfolding process. A new metric was also used to quantify the gain in terms of the gap-crossing ability in comparison with that observed with classical quadrotors with rigid bodies. The performances of these morphing robots are presented, and experiments performed with a real flying robot passing through a small aperture by reducing its wingspan by 48% are described and discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6206552 | PMC |
http://dx.doi.org/10.1089/soro.2017.0120 | DOI Listing |
J Med Internet Res
September 2025
School of Advertising, Marketing and Public Relations, Faculty of Business and Law, Queensland University of Technology, Brisbane, Australia.
Background: Labor shortages in health care pose significant challenges to sustaining high-quality care for people with intellectual disabilities. Social robots show promise in supporting both people with intellectual disabilities and their health care professionals; yet, few are fully developed and embedded in productive care environments. Implementation of such technologies is inherently complex, requiring careful examination of facilitators and barriers influencing sustained use.
View Article and Find Full Text PDFNeuro Endocrinol Lett
September 2025
Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, China.
Background: Pheochromocytomas and paragangliomas (PPGLs) are rare catecholamine-secreting neuroendocrine tumors originating from the embryonic neural crest. Approximately 30% of PPGLs are hereditary and are frequently associated with genetic syndromes, including neurofibromatosis type 1 (NF1). Composite PPGLs, which include components of both PPGLs and related tumors such as ganglioneuromas, are extremely rare in NF1 patients.
View Article and Find Full Text PDFJ Bras Pneumol
September 2025
. Centro de Medicina Intervencionista, Hospital Israelita Albert Einstein, São Paulo (SP) Brasil.
Phys Rev Lett
August 2025
Shanghai Jiao Tong University, State Key Laboratory of Mechanical System and Vibration, Shanghai 200240, China.
Building localized states with high quality factors in compact dynamic systems could enhance the performance of wave control devices such as elastic filters and high-precision sensing devices. Here, we report on the theoretical and experimental investigation of symmetry-protected bound states in the continuum (BICs) in a compressed metaplate. The proposed theory establishes a Bessel-zero-directed multipolarization design that enables precise modulation for the frequencies and modes of BICs.
View Article and Find Full Text PDFSci Robot
September 2025
University of Wisconsin-Madison, Madison, WI 53706, USA.
Family-centered integration is critical for the success of in-home educational robots.
View Article and Find Full Text PDF