98%
921
2 minutes
20
Background: A key strategy in biodiversity conservation is the establishment of protected areas. In the future, however, the redistribution of species in response to ongoing climate change is likely to affect species' representativeness in those areas. Here we quantify the effectiveness of planning protected areas network to represent 151 birds endemic to the Brazilian Atlantic Forest hotspot, under current and future climate change conditions for 2050.
Methods: We combined environmental niche modeling and systematic conservation planning using both a county and a regional level planning strategy. We recognized the conflict between biodiversity conservation and economic development, including socio-economic targets (as opposed to biological only) and using planning units that are meaningful for policy-makers.
Results: We estimated an average contraction of 29,500 km in environmentally suitable areas for birds, representing 52% of currently suitable areas. Still, the most cost-effective solution represented almost all target species, requiring only ca. 10% of the Atlantic Forest counties to achieve that representativeness, independent of strategy. More than 50% of these counties were selected both in the current and future planned networks, representing >83% of the species.
Discussion: Our results indicate that: (i) planning protected areas network currently can be useful to represent species under climate change; (ii) the overlapped planning units in the best solution for both current and future conditions can be considered as "no regret" areas; (iii) priority counties are spread throughout the biome, providing specific guidance wherever the possibility of creating protected area arises; and (iv) decisions can occur at different administrative spheres (Federal, State or County) as we found quite similar numerical solutions using either county or regional level strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5971100 | PMC |
http://dx.doi.org/10.7717/peerj.4689 | DOI Listing |
J Fish Biol
September 2025
National Oceanic and Atmospheric Administration/NOS/NCCOS/MSE/Biogeography Branch, Silver Spring, Maryland, USA.
Despite snappers' (family Lutjanidae) commercial and ecological significance, knowledge gaps remain regarding life history, ontogeny and ecology across their range in the Caribbean and south Atlantic. There is also a need to explore the efficacy of marine protected areas (MPAs) as a tool for enhancing nursery and spawning habitat conservation for multiple snapper species. Additionally, even as hurricanes and sargassum inundation have become rising issues for coastal communities, there is a scarcity of data on how commercially important species respond to these environmental disturbances.
View Article and Find Full Text PDFProg Mol Biol Transl Sci
September 2025
Department of Information Sciences and Technology, School of Computing, George Mason University, Fairfax, VA, United States.
Wearable technology has a promising potential to transform users' lives by continuously collecting data and providing convenient services on demand. Yet, there is also a large potential to breach users' privacy compromising the confidentiality of sensitive data. The lack of privacy regulations is caused by a limited understanding of how to control data collection, access and sharing.
View Article and Find Full Text PDFJ Phys Chem B
September 2025
Department of Chemistry and Chemical Engineering, Florida Institute of Technology, Melbourne, Florida 32901, United States.
Merocyanine photoacids (MCHs) have found applications in chemical, material, energy, and biomedical areas, and are currently being investigated for industrial applications. Hydrolysis, relatively high dark acidity, and moderate solubility in water are the major concerns for their practical applications. Inspired by the structure of the cell membrane, we incorporated the most commonly used MCH into sodium dodecyl sulfate (SDS) micelles.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China.
Mounting evidence indicates that viruses exploit elevated reactive oxygen species (ROS) levels to promote replication and pathogenesis, yet the mechanistic underpinnings of this viral strategy remain elusive for many viral systems. This study uncovers a sophisticated viral counter-defense mechanism in the Cryphonectria hypovirus 1 (CHV1)-Fusarium graminearum system, where the viral p29 protein subverts host redox homeostasis to overcome antiviral responses. That p29 directly interacts with and inhibits the enzymatic activity of fungal NAD(P)H-dependent FMN reductase 1 (FMR1), leading to increased ROS accumulation and subsequent autophagy activation is demonstrated.
View Article and Find Full Text PDFClin Interv Aging
September 2025
Gravitational Physiology and Medicine Research Unit, Division of Physiology and Pathophysiology, Otto Löwi Research Center of Vascular Biology, Immunity and Inflammation, Medical University of Graz, Graz, Austria.
Purpose: The development of home-based clinical interventions and healthcare supported by digital tools has rapidly advanced in recent years, promising improvements in preventive and personalized treatment, especially for aging chronic patients. However, many systems are launched without feedback from healthcare experts, essential for understanding their strengths, limitations, and areas for improvement. This study had two objectives: first, to gather expert opinions on the qualities and limitations of current home-centred healthcare trends for aging patients; second, as a case study, to obtain feedback on a novel system, (TI-Health), integrating these trends.
View Article and Find Full Text PDF