98%
921
2 minutes
20
Purpose: Silibinin, is a natural compound, which has shown anticancer activity in various malignancies. In this study, we evaluated the anticancer effects of silibinin in B16-F10 melanoma cells and developed a novel thermoresponsive hydrogel for local delivery of this compound.
Method: A thermoresponsive hydrogel loaded with silibinin was prepared using triblock copolymers of poly[(α-benzyl carboxylate-e-caprolactone)-co-(α-carboxyl-e-caprolactone)]ran-b-PEG-b-[(α-benzyl carboxylate-e-caprolactone) -co-(α-carboxyl-e-caprolactone)]ran (PCBCL-b-PEG-b-PCBCL), namely PolyGelTM, and compared with a Pluronic F-127 formulation of silibinin. Sol-gel transition temperature of hydrogels was measured by inverse flow method and modulated differential scanning calorimetry (MDSC). Silibinin loading efficiency was measured by HPLC. The MTT and clonogenic assays were used to assess the cytotoxicity and anti-proliferative effects of silibinin on B16-F10 melanoma cells. Flow cytotmetry was used to quantify the induced level of apoptosis and measure the intracellular level of activated STAT3 (pSTAT3) following silibinin treatment in B16.F10 cells. The effects of silibinin on the activation of oncogenic proteins were also evaluated by western blot.
Results: Silibinin inhibited cell proliferation (IC50 = 67 µM), provoked cell cycle arrest, induced apoptosis, suppressed key oncogenic pathways (i.e STAT3 and MEK/ERK), and enhanced the cytotoxic effects of doxorubicin in B16-F10 cells. Both PolyGelTM and Pluronic F-127 hydrogels were effective in loading silibinin. A lower drug release pattern within 24h, fitting first- order release kinetics, was observed for the release of silibinin from both gels compared to free drug. PolyGelTM demonstrated enhanced percutaneous absorption of silibinin through increasing mouse skin intracellular lipid fluidity as documented by DSC of skin following PolyGelTM use. Silibinin loaded in PolyGel TM inhibited the growth of B16-F10 cells (IC50 = 30 µM) and effectively suppressed pSTAT3 activity in B16-F10 cells at 10 µM.
Conclusion: Our results imply a great potential for PolyGel TM formulations of silibinin for local treatment of malignant melanoma. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's content page.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.18433/jpps29726 | DOI Listing |
PLoS One
September 2025
Department of Zoology, Baba Guru Nanak University, Nankana Sahib, Pakistan.
Secreted frizzled-related protein 4 (sFRP4) plays a fundamental role in the regulation of Wnt signalling, which is crucial for cellular proliferation and differentiation. The sFRP4 has garnered significant interest as a therapeutic target for metabolic diseases and cancer due to its mechanism of action. Although existing sFRP4 modulators show limited specificity and notable off-target effects, our study explores the potential of known bioactive compounds as more selective and less toxic alternatives.
View Article and Find Full Text PDFBiomaterials
September 2025
Department of Radiology, Fifth Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Taiyuan, 030000, China. Electronic address:
Acute liver injury (ALI) is a serious disease characterized by liver function impairment caused by multiple causes in a short period of time. Due to lack of precise diagnosis and timely intervention, many patients with ALI rapidly progress to liver dysfunction and liver failure. Here, a multifunctional silybin nano-prodrug, PTS@IR, was developed that integrated microenvironment-activatable second near-infrared (NIR-II) fluorescence (FL) imaging for precise diagnosis and timely therapy of ALI.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Centre for Advanced Material Application, Slovak Academy of Sciences, Bratislava, Slovakia.
Oncotarget
August 2025
Oncologia Medica, Dipartimento di Internistica Clinica e Sperimentale "F. Magrassi", Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy.
BMC Plant Biol
August 2025
Department of Agriculture and Plant Breeding group, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran.
To evaluate the milk thistle transcriptome under drought stress in field conditions, irrigation was applied using a weighted method at three levels: 100% F.C every 2 days, 70% F.C every 4 days, and 40% F.
View Article and Find Full Text PDF