98%
921
2 minutes
20
Introduction: Achilles tendinopathy (AT) is a cause of pain and disability affecting both athletes and sedentary individuals. More than 150 000 people in the UK every year suffer from AT.While there is much preclinical work on the use of stem cells in tendon pathology, there is a scarcity of clinical data looking at the use of mesenchymal stem cells to treat tendon disease and there does not appear to be any studies of the use of autologous cultured mesenchymal stem cells (MSCs) for AT. Our hypothesis is that autologous culture expanded MSCs implanted into an area of mid-portion AT will lead to improved pain-free mechanical function. The current paper presents the protocol for a phase IIa clinical study.
Methods And Analysis: The presented protocol is for a non-commercial, single-arm, open-label, phase IIa proof-of-concept study. The study will recruit 10 participants and will follow them up for 6 months. Included will be patients aged 18-70 years with chronic mid-portion AT who have failed at least 6 months of non-operative management. Participants will have a bone marrow aspirate collected from the posterior iliac crest under either local or general anaesthetic. MSCs will be isolated and expanded from the bone marrow. Four to 6 weeks after the harvest, participants will undergo implantation of the culture expanded MSCs under local anaesthetic and ultrasound guidance. The primary outcome will be safety as defined by the incidence rate of serious adverse reaction. The secondary outcomes will be efficacy as measured by patient-reported outcome measures and radiological outcome using ultrasound techniques.
Ethics And Dissemination: The protocol has been approved by the National Research Ethics Service Committee (London, Harrow; reference 13/LO/1670). Trial findings will be disseminated through peer-reviewed publications and conference presentations.
Trial Registration Number: NCT02064062.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5961605 | PMC |
http://dx.doi.org/10.1136/bmjopen-2018-021600 | DOI Listing |
Stem Cell Res
September 2025
Department of General Pediatrics, Neonatology, and Pediatric Cardiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf 40225, Germany. Electronic address:
Pathogenic variants in the gene COQ4 cause primary coenzyme Q deficiency, which is associated with symptoms ranging from early epileptic encephalopathy up to adult-onset ataxia-spasticity spectrum disease. We genetically modified commercially available wild-type iPS cells by using a CRISPR/Cas9 approach to create heterozygous and homozygous isogenic cell lines carrying the disease-causing COQ4 variants c.458C > T, p.
View Article and Find Full Text PDFAnnu Rev Pathol
September 2025
3Department of Pathology, Stanford University, Stanford, California, USA;
Clonal hematopoiesis, originally identified as a precursor to hematologic malignancies, has emerged as a significant factor in various nonmalignant diseases. Recent research highlights how somatic mutations in hematopoietic stem cells lead to the expansion of circulating mutated immune cells that exert profound effects on organ function and disease progression. These mutated clones display altered inflammatory profiles and tissue-specific functional consequences, contributing to various diseases including atherosclerotic cardiovascular disease, osteoporosis, heart failure, and neurodegenerative conditions.
View Article and Find Full Text PDFCells
September 2025
Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy.
The journal retracts the article titled "Multipotent Stromal Cells from Subcutaneous Adipose Tissue of Normal Weight and Obese Subjects: Modulation of Their Adipogenic Differentiation by Adenosine A Receptor Ligands" [...
View Article and Find Full Text PDFBraz Oral Res
September 2025
Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Department of Pediatric Dentistry, Ribeirão Preto, SP, Brazil.
Tumor necrosis factor-alpha (TNF-α) is a cytokine involved in the immune-inflammatory response. It can induce an odontoblastic phenotype and enhance biomineralization in dental pulp mesenchymal stem cells but does not have the same effect on osteoblasts. The reasons for this differential response, despite the shared lineage of these cell types, are not yet clear.
View Article and Find Full Text PDFPLoS One
September 2025
Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
Crosstalk between leukemic cells and their surrounding mesenchymal stromal cells (MSCs) in the bone marrow microenvironment is crucial for the pathogenesis of myelodysplastic syndromes (MDS) and is mediated by extracellular vesicles (EVs). The EV-specific miRNAs derived from MDS-MSCs remain poorly explored. EVs isolated from HS-5, an immortalized stromal cell line, promoted the proliferation and 5-azacytidine (AZA) resistance of SKM-1 cells.
View Article and Find Full Text PDF