98%
921
2 minutes
20
In metazoans, organisms arising from a fertilized egg, the embryo will develop through multiple series of cell divisions, both symmetric and asymmetric, leading to differentiation. Aurora A is a serine threonine kinase highly involved in such divisions. While intensively studied at the cell biology level, its function in the development of a whole organism has been neglected. Here we investigated the pleiotropic effect of Aurora A loss-of-function in Drosophila larval early development. We report that Aurora A is required for proper larval development timing control through direct and indirect means. In larval tissues, Aurora A is required for proper symmetric division rate and eventually development speed as we observed in central brain, wing disc and ring gland. Moreover, Aurora A inactivation induces a reduction of ecdysteroids levels and a pupariation delay as an indirect consequence of ring gland development deceleration. Finally, although central brain development is initially restricted, we confirmed that brain lobe size eventually increases due to additive phenotypes: delayed pupariation and over-proliferation of cells with an intermediate cell-identity between neuroblast and ganglion mother cell resulting from defective asymmetric neuroblast cell division.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ydbio.2018.05.005 | DOI Listing |
Comp Biochem Physiol C Toxicol Pharmacol
September 2025
Occupational Health, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126, Ancona, Italy. Electronic address:
Artificial light at night (ALAN) can disrupt numerous biological processes, and is increasingly studied in animal models. Here, we evaluated the impact of red and blue ALAN on Drosophila melanogaster, focusing on fertility, development, circadian rhythms, and gene expression. All results were compared to those of a control group maintained under a 12 h white light/12 h dark cycle.
View Article and Find Full Text PDFPLoS Genet
September 2025
Institut de Biologia Molecular de Barcelona, IBMB-CSIC, Department of Cells and Tissues, Parc Científic de Barcelona, Barcelona, Spain.
Chitin is a major component of arthropod extracellular matrices, including the exoskeleton and the midgut peritrophic matrix. It plays a key role in the development, growth and viability of insects. Beyond the biological importance of this aminopolysaccharide, chitin also receives considerable attention for its practical applications in medicine and biotechnology, as it is a superior biopolymer with excellent physicochemical and mechanical properties.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
Key Laboratory of Intergraded Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Uygur Autonomous Region Academy of Agricultural Sciences/Xinjiang Key Laboratory of Agricultural Biosafety, Urumqi 830091, China. Electroni
CYP303A1 is vital for metamorphosis in Locusta migratoria and Drosophila melanogaster. Here we uncovered that RNA interference (RNAi) against Hvcyp303a1 in the third instar larvae in a Coleopteran Henosepilachna vigintioctopunctata caused severe phenotypic defects. The Hvcyp303a1 RNAi larvae grew slowly, had thin head capsule and soft scoli, and ate less potato foliage.
View Article and Find Full Text PDFTissue homeostasis is dependent on precise coordination between endocrine organs in response to changes in organism physiology. Secreted circulating factors from adipocytes (called adipokines) regulate the behavior of stem cell lineages in peripheral tissues in multiple organisms. In addition to their endocrine roles, adipocytes store and secrete amino acid storage proteins throughout development.
View Article and Find Full Text PDFHippo signaling is a conserved regulator of tissue homeostasis across metazoans. The Ste20 family kinase Hippo/MST activates the NDR family kinase Warts/LATS to inhibit the transcriptional coactivator Yorkie/YAP/TAZ and its transcription factor partner Scalloped/TEAD. In , cell lineages and organ sizes are largely invariant, and classical Hippo phenotypes such as tissue overgrowth are absent.
View Article and Find Full Text PDF