Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A facile and versatile approach was demonstrated for the fabrication of low-fouling pressure retarded osmosis (PRO) membranes for osmotic power generation from highly polluted wastewater. A water-soluble zwitterionic random copolymer with superior hydrophilicity and unique chemistry was molecularly designed and synthesized via a single-step free-radical polymerization between 2-methacryloyloxyethyl phosphorylcholine (MPC) and 2-aminoethyl methacrylate hydrochloride (AEMA). The P[MPC- co-AEMA] copolymer was then chemically grafted onto the surface of PES/Torlon hollow fibers via amino groups coupling of poly(AEMA) with the polyimide structures of Torlon, leaving the zwitterions of poly(MPC) in the feed solution. Because of the outstanding hydrophilicity, unique cationic and anionic groups, and electrical neutrality of the zwitterionic brush, the newly developed membrane showed great resistances to both inorganic scaling and organic fouling in PRO operations. When using a real wastewater brine comprising multifoulants as the feed, the P[MPC- co-AEMA] modified membrane exhibits a much lower flux decline of 37% at Δ P = 0 bar after 24-h tests and a smaller power density decrease of 28% at Δ P = 15 bar within 12-h tests, compared to 61% and 42% respectively for the unmodified one. In addition to the low fouling tendency, the modified membrane shows outstanding performance stability and fouling reversibility, where the flux is almost fully recovered by physical backwash of water at 15 bar for 0.5 h. This study provides valuable insights and strategies for the design and fabrication of effective antifouling materials and membranes for PRO osmotic power generation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.7b05933DOI Listing

Publication Analysis

Top Keywords

osmotic power
12
power generation
12
membranes osmotic
8
pressure retarded
8
retarded osmosis
8
osmosis pro
8
hydrophilicity unique
8
p[mpc- co-aema]
8
modified membrane
8
advanced anti-fouling
4

Similar Publications

Solar-Enhanced Blue Energy Conversion via Photo-electric/thermal in GO/MoS/CNC Nanofluidic Membranes.

Small

September 2025

Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China.

In recent years, light-controlled ion transport systems have attracted widespread attention, however, the use of photoresponsive materials suffers from rapid carrier recombination, thermal field limitations, and narrow spectral response, which significantly restricts their performance enhancement in osmotic energy conversion. This study innovatively couples "blue energy" (osmotic energy) with "green energy" (solar energy), assembling graphene oxide/molybdenum disulfide/sulfonated cellulose nanocrystal (GO/ MoS/CNC) ion-channel membranes. Under solar irradiation, the energy level difference between MoS and GO effectively suppresses the recombination of photogenerated carriers, generating more active electrons and significantly enhancing the carrier density, thereby improving the current flux and ion selectivity.

View Article and Find Full Text PDF

Unveiling Ion-Transport Dynamics in 2D Nanofluidic Anion-Selective Membranes toward Osmotic Energy Harvesting.

Nano Lett

September 2025

State Key Laboratory of Materials Low-Carbon Recycling, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, P. R. China.

Two-dimensional (2D) nanofluidic architectures with nanoconfined interlayer channels and excess surface charges have revolutionized membrane-based reverse electrodialysis systems, demonstrating highly efficient osmotic energy collection through strong electrostatic screening of electric double layer (EDL). However, the ion-transport dynamics in 2D nanofluidic anion-selective membranes (2D-NAMs) still remain unexplored. Here, we combine density functional theory and molecular dynamics (MD) simulations to systematically explore ion transport in the 2D-NAMs.

View Article and Find Full Text PDF

Biomimetic Dual Asymmetric MXene-Based Nanofluidics for Advancing Osmotic Power Generation.

J Am Chem Soc

September 2025

Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, China.

Nanofluidics-based reverse electrodialysis offers a promising approach for harnessing the osmotic energy that exists between saline and fresh water, thereby providing a sustainable source of power. Nevertheless, the key obstacle to realizing a commercially viable power output stems from inadequate ion permselectivity in nanofluidics. Here, we engineer dual asymmetric MXene-based composite nanofluidics (DA-MXCNs) composed of a negatively charged, porous MXene layer and a positively charged, confined MXene layer, which strategically incorporates asymmetric channel dimensions and opposing charge distributions.

View Article and Find Full Text PDF

The growing global demand for clean and sustainable energy has intensified the development of novel technologies capable of harnessing naturally available resources. Among these, blue energy, referring to the power generated from the mixing of waters with different salinities, has emerged as a promising yet underutilized source. This perspective presents a comprehensive synthesis of recent advances in electrochemical harvesting systems, with a particular focus on Mixing Entropy Batteries (MEBs) as efficient, membrane-free devices for salinity gradient energy recovery.

View Article and Find Full Text PDF

Osmotic Energy Directly Driving Flexible All-Solid-State 2D Nanofluidic Pressure Sensors.

Adv Mater

September 2025

School of Integrated Circuits, Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China.

Current utilization of osmotic energy often involves multiple complex processes, including collection, storage, and conversion, which limits its applicability in portable electronic devices. Inspired by the biosensing system of human skin, a novel iontronic pressure sensor is developed, directly driven by osmotic energy. By leveraging the tunable nanofluidic effects of 2D materials, ion selective migration driven by osmotic energy is controlled through mechanical modulating of interlayer spacing, thereby converting external pressure into encodable electrical signals.

View Article and Find Full Text PDF