Single Step Double-walled Nanoencapsulation (SSDN).

J Control Release

Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI 02912, USA; School of Engineering, Brown University. Providence, RI 02912, USA; Center for Biomedical Engineering, Brown University. Providence, RI 02912, USA. Electronic address: Edith_Mathiowitz@br

Published: June 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A quick fabrication method for making double-walled (DW) polymeric nanospheres is presented. The process uses sequential precipitation of two polymers. By choosing an appropriate solvent and non-solvent polymer pair, and engineering two sequential phase inversions which induces first precipitation of the core polymer followed by precipitation of the shell polymer, DW nanospheres can be created instantaneously. A series of DW formulations were prepared with various core and shell polymers, then characterized using laser diffraction particle sizing, scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy, and differential scanning calorimetry (DSC). Atomic force microscopy (AFM) imaging confirmed existence of a single core polymer coated with a second polymer. Insulin (3.3% loading) was used as a model drug to assess its release profile from core (PLGA) and shell (PBMAD) polymers and resulted with a tri-phase release profile in vitro for two months. Current approaches for producing DW nanoparticles (NPs) are limited by the complexity and time involved. Additional issues include aggregation and entrapment of multiple spheres and the undesired formation of heterogeneous coatings. Therefore, the technique presented here is advantageous because it can produce NPs with distinct, core-shell morphologies through a rapid, spontaneous, self-assembly process. This method not only produces DW NPs, but can also be used to encapsulate therapeutic drug. Furthermore, modification of this process to other core and shell polymers is feasible using the general guidelines provided in this paper.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5993621PMC
http://dx.doi.org/10.1016/j.jconrel.2018.04.048DOI Listing

Publication Analysis

Top Keywords

core polymer
8
core shell
8
shell polymers
8
atomic force
8
force microscopy
8
release profile
8
polymer
5
core
5
single step
4
step double-walled
4

Similar Publications

Patchy nanoparticles (NPs) enable directional interactions and dynamic structural transformations, yet controlling polymeric patch formation with high spatial precision remains a significant challenge. Here, a thermally driven approach is presented to forming polystyrene (PS) patches on low-curvature facets of anisotropic gold nanocubes (NCs) using a single polymer component. Heating in DMF above 90 °C triggers selective desorption of PS chains from high-curvature edges and vertices via Au─S bond dissociation, followed by migration and deposition into rounded patches on flat surfaces.

View Article and Find Full Text PDF

The field of biomaterials has evolved rapidly with the introduction of time as a transformative factor, giving rise to four-dimensional (4D) materials that can dynamically change their structure or function in response to external stimuli. This review presents a comprehensive comparison between traditional three-dimensional (3D) and emerging 4D biomaterials, highlighting the key distinctions in design, adaptability, and functionality. We explore the development of smart biomaterials at the core of 4D systems, including stimuli-responsive polymers, shape-memory materials, and programmable hydrogels.

View Article and Find Full Text PDF

Positive temperature coefficient (PTC) materials are pivotal for safeguarding lithium iron phosphate batteries, yet their industrial application is hindered by critical drawbacks: excessive film thickness, high internal resistance, and poor solvent sustainability. Addressing these challenges, this study innovatively develops a solvent-free thermal rolling process to fabricate an asymmetric expansion polymer film, specifically thermoplastic polyurethane (TPU) reinforced polyethylene (PE)/carbon composites, which significantly enhances the PTC effect. The core mechanism lies in the asymmetric thermal expansion of TPU and PE: this unique behavior disrupts the conductive carbon network, triggering a sharp PTC transition at around 120 °C.

View Article and Find Full Text PDF

The inhibition of dependent glutamine metabolism is an effective treatment for triple-negative breast cancer (TNBC) starvation, but it is limited by compensatory glycolysis and inadequate delivery efficiency. Herein, we construct a pH-responsive size/charge-reprogrammed micelle with hierarchical delivery characteristics for TNBC suppression with glutamine depletion and vessel blockade. It consists of a positively charged prodrug micelle chemically grafted with the glutamine transport inhibitor V9302 as the inner core layer, the neovascular disruptor CA4P adsorbed in the middle layer, and a pH-responsive peelable polymer as the outer shell.

View Article and Find Full Text PDF

The development of novel optical self-healing materials holds significant importance for applications in anticounterfeiting and information encryption, but remains a formidable challenge. This study presents a fluorescent self-healing material designed for 2D/3D printing anticounterfeiting applications, exhibiting outstanding properties such as high transmittance, excellent mechanical strength, and remarkable self-healing efficiency. The triple dynamic bond networks provide robust mechanical and self-healing capabilities, with the polymer demonstrating a tensile strength of 26.

View Article and Find Full Text PDF