Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Heterologous tRNA:aminoacyl tRNA synthetase pairs are often employed for noncanonical amino acid incorporation in the quest for an expanded genetic code. In this work, we investigated one possible mechanism by which directed evolution can improve orthogonal behavior for a suite of Methanocaldococcus jannaschii ( Mj) tRNA-derived amber suppressor tRNAs. Northern blotting demonstrated that reduced expression of heterologous tRNA variants correlated with improved orthogonality. We suspected that reduced expression likely minimized nonorthogonal interactions with host cell machinery. Despite the known abundance of post-transcriptional modifications in tRNAs across all domains of life, few studies have investigated how host enzymes may affect behavior of heterologous tRNAs. Therefore, we measured tRNA orthogonality using a fluorescent reporter assay in several modification-deficient strains, demonstrating that heterologous tRNAs with high expression are strongly affected by some native E. coli RNA-modifying enzymes, whereas low abundance evolved heterologous tRNAs are less affected by these same enzymes. We employed mass spectrometry to map msiA37 and Ψ39 in the anticodon arm of two high abundance tRNAs (Nap1 and tRNA), which provides (to our knowledge) the first direct evidence that MiaA and TruA post-transcriptionally modify evolved heterologous amber suppressor tRNAs. Changes in total tRNA modification profiles were observed by mass spectrometry in cells hosting these and other evolved suppressor tRNAs, suggesting that the demonstrated interactions with host enzymes might disturb native tRNA modification networks. Together, these results suggest that heterologous tRNAs engineered for specialized amber suppression can evolve highly efficient suppression capacity within the native post-transcriptional modification landscape of host RNA processing machinery.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssynbio.7b00421DOI Listing

Publication Analysis

Top Keywords

heterologous trnas
20
suppressor trnas
12
trnas
10
directed evolution
8
heterologous
8
post-transcriptional modifications
8
amber suppressor
8
reduced expression
8
interactions host
8
host enzymes
8

Similar Publications

is an important industrial producer of cephalosporin C (CPC), and efficient genome editing tools are critical for its exploitation and metabolic engineering. Currently, CRISPR/Cas9 systems for employ heterologous promoters, including P or AfU6p, to drive sgRNA expression. These systems often required additional sgRNA processing elements such as ribozymes or tRNAs, which increased cloning complexity and experimental workload.

View Article and Find Full Text PDF

Strategic engineering for overproduction of oviedomycin, a Type II polyketide, in Escherichia coli.

Metab Eng

July 2025

Department of Chemical & Biological Engineering, Korea University, Seoul, 02841, Republic of Korea. Electronic address:

This study aimed to develop a metabolically engineered Escherichia coli strain capable of producing oviedomycin, a type II angucyclinone polyketide compound with anticancer activity. We first addressed the challenges of in vivo reassembly of the type II polyketide synthase machinery in E. coli.

View Article and Find Full Text PDF

Translation elongation is a multifaceted process that intricately links translational resource availability to the biophysical effects arising from the interaction of mRNA sequences, ribosomes, and nascent polypeptide chains. Optimizing (heterologous) gene expression via codon usage or tRNA preference alone may yield suboptimal outcomes. In this study, we present a comprehensive mechanistic model that accounts for the competition of tRNAs at the ribosomal A-site, internal Shine-Dalgarno sequence interactions, and the decelerating effects of positively charged peptide patches.

View Article and Find Full Text PDF

Toward a Quadruplet Codon Mitochondrial Genetic Code.

ACS Synth Biol

December 2024

Department of Chemistry, Scripps Research, 10550 North Torrey Pines Rd, La Jolla, California 92037, United States.

Article Synopsis
  • Nature typically uses a genetic code made up of triplet nucleotide codons, but there's potential for using quadruplet codons as well.
  • This study explores creating a genome entirely based on quadruplet codons by modifying tRNA to suppress mutant genes in yeast mitochondria.
  • The successful production of full-length COX3 and a functioning respiratory system illustrates a new method for genetic engineering in yeast and lays the groundwork for a quadruplet codon genetic code.
View Article and Find Full Text PDF

Human angiogenin (hANG) is the most studied stress-induced ribonuclease (RNase). In physiological conditions it performs its main functions in nucleoli, promoting cell proliferation by rDNA transcription, whereas it is strongly limited by its inhibitor (RNH1) throughout the rest of the cell. In stressed cells hANG dissociates from RNH1 and thickens in the cytoplasm where it manages the translational arrest and the recruitment of stress granules, thanks to its propensity to cleave tRNAs and to induce the release of active halves.

View Article and Find Full Text PDF