98%
921
2 minutes
20
Climate change will not only shift environmental means but will also increase the intensity of extreme events, exerting additional stress on ecosystems. While field observations on the ecological consequences of heat waves are emerging, experimental evidence is rare, and lacking at the community level. Using a novel "near-natural" outdoor mesocosms approach, this study tested whether marine summer heat waves have detrimental consequences for macrofauna of a temperate coastal community, and whether sequential heat waves provoke an increase or decrease of sensitivity to thermal stress. Three treatments were applied, defined and characterized through a statistical analysis of 15 years of temperature records from the experimental site: (1) no heat wave, (2) two heat waves in June and July followed by a summer heat wave in August and (3) the summer heat wave only. Overall, 50% of the species showed positive, negative or positive/negative responses in either abundance and/or biomass. We highlight four possible ways in which single species responded to either three subsequent heat waves or one summer heat wave: (1) absence of a response (tolerance, 50% of species), (2) negative accumulative effects by three subsequent heat waves (tellinid bivalve), (3) buffering by proceeding heat waves due to acclimation and/or shifts in phenology (spionid polychaete) and (4) an accumulative positive effect by subsequent heat waves (amphipod). The differential responses to single or sequential heat waves at the species level entailed shifts at the community level. Community-level differences between single and triple heat waves were more pronounced than those between regimes with vs. without heat waves. Detritivory was reduced by the single heat wave while suspension feeding was less common in the triple heat wave regime. Critical extreme events occur already today and will occur more frequently in a changing climate, thus, leading to detrimental impacts on coastal marine systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gcb.14282 | DOI Listing |
J Vis Exp
August 2025
Institute of Orthopedic Surgery, Xijing Hospital, Air force Medical University;
Bone tissue is an important load-bearing organ of the human body. Moderate exercise enhances bone mass through mechanical loading, while high-intensity exercise may suppress it. Infrared therapy improves circulation, reduces pain/inflammation, and aids tissue repair.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China. Electronic address:
Background: Lung ischemia-reperfusion injury (LIRI) is a pathological condition characterized by aggravated oxidative-inflammatory tissue damage that occurs upon blood flow restoration after ischemia. LIRI can lead to severe complications, including primary graft dysfunction in lung transplants and multi-organ failure. However, current treatments remain limited.
View Article and Find Full Text PDFEnviron Int
September 2025
State Key Laboratory of Severe Weather (LASW), Chinese Academy of Meteorological Sciences (CAMS), China Meteorological Administration, Beijing 100081, China.
In the context of global warming, the frequency and intensity of extreme weather events are intensifying. Although cold waves have significant impacts on human health, related research remains insufficient. This study integrates high-resolution population dynamics and temperature data to assess cold exposure risks during cold waves in Beijing, addressing a critical research gap in urban public health.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Department of Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France; Department of Pharmacy, Nîmes University Hospital, 30900 Nimes, France. Electronic address:
Polysaccharide-based hydrogels often lack mechanical strength and, when used for protein delivery, are generally limited to diffusion-based release. In this work, we developed robust polysaccharide- and polyester-based near-infrared (NIR)-responsive hydrogels. Hydrogels are made from photo-crosslinked methacrylated dextran (DEX-MA), methacrylated polylactide containing oxygen reactive species (ROS) sensitive thioketal groups (PLA-TK-MA), and covalently bound protoporphyrin IX (PPIX) that generates ROS under NIR irradiation.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan Un
Recently, a variety of stimulus-responsive hydrogel platforms have been developed, specifically designed to respond to changes in physiological signals within the disease microenvironment. However, due to the restricted regulation of drug release behavior in vivo by such hydrogel systems, the precise control of drug release kinetics has not been achieved. Therefore, developing precise drug delivery platforms that enable programmable and "on-off" delivery remains a challenge in this field.
View Article and Find Full Text PDF