Effects of task complexity and age-differences on task-related functional connectivity of attentional networks.

Neuropsychologia

Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, TX 75080, USA. Electronic address:

Published: June 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Studies investigating the strength and membership of regions within multiple functional networks primarily focus on either resting state or single cognitive tasks. The goals of the current study were to investigate whether task-related functional connectivity changes with task complexity, and whether this connectivity-complexity relationship is age-sensitive. We assessed seed-to-voxel functional connectivity for the default mode network (DMN) and two attentional networks [cingulo-opercular (CO), fronto-parietal (FP)] in three cognitive control tasks of increasing complexity (Single task, Dual task, and Memory Updating), across younger and older adults (N = 52; N = 23; N = 29). The three tasks systematically varied in cognitive control demands due to differing maintenance, switching, and updating requirements. Functional connectivity for all networks, resulting from task > rest contrasts, increased with greater task complexity, irrespective of age and gray matter volume. Moreover, between-network connectivity for DMN, CO, and FP regions was greatest for working memory updating, the most complex task. Regarding age-related differences in accuracy, none were observed for Single or Dual tasks, but older adults had poorer accuracy in Memory Updating. More anterior frontal clusters of functional connectivity were observed for older, compared to younger, adults; these were limited to seeds of the two attentional networks. Importantly, increased connectivity in these additional frontal regions in older adults were non-compensatory, because they were associated with detrimental task performance, especially Memory Updating. For the Memory Updating > Rest, the younger > older contrast resulted in greater DMN seed connectivity to regions in the other two attentional networks, implicating increased reliance on between-network connectivity for the DMN seeds during complex cognitive tasks. Our results also implicate functional connectivity between attentional networks and the cerebellum during cognitive control. Reliability of multiple seeds in the seed-to-voxel connectivity is also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropsychologia.2018.04.013DOI Listing

Publication Analysis

Top Keywords

functional connectivity
24
attentional networks
20
memory updating
20
task complexity
12
cognitive control
12
older adults
12
connectivity
11
task-related functional
8
connectivity attentional
8
cognitive tasks
8

Similar Publications

Environmental Stresses Constrain Soil Microbial Community Functions by Regulating Deterministic Assembly and Niche Width.

Mol Ecol

September 2025

State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Shaanxi, People's Republic of China.

Increasing evidence indicates that the loss of soil microbial α-diversity triggered by environmental stress negatively impacts microbial functions; however, the effects of microbial α-diversity on community functions under environmental stress are poorly understood. Here, we investigated the changes in bacterial and fungal α- diversity along gradients of five natural stressors (temperature, precipitation, plant diversity, soil organic C and pH) across 45 grasslands in China and evaluated their connection with microbial functional traits. By quantifying the five environmental stresses into an integrated stress index, we found that the bacterial and fungal α-diversity declined under high environmental stress across three soil layers (0-20 cm, 20-40 cm and 40-60 cm).

View Article and Find Full Text PDF

Forest loss, fragmentation, and transformation negatively impact forest biodiversity and ecosystem functionality worldwide. Improving landscape intactness and connectivity through restoration is critical. Determining where to restore remains, however, a challenge.

View Article and Find Full Text PDF

Mean Airway Pressure-An Informative but Overlooked Indicator of Mechanical Power.

Crit Care Explor

September 2025

Division of Pulmonary, Allergy, Critical Care, and Sleep, University of Minnesota, Minneapolis, MN.

Mean airway pressure, a monitored variable continuously available on the modern ventilator, is the pressure measured at the airway opening averaged over the time needed to complete the entire respiratory cycle. Mean airway pressure is well recognized to connect three key physiologic processes in mechanical ventilation: physical stretch, cardiovascular dynamics, and pulmonary gas exchange. Although other parameters currently employed in adults to determine "safe" ventilation are undoubtedly valuable for daily practice, all have limitations for continuous monitoring of ventilation hazard.

View Article and Find Full Text PDF

Unravelling the molecular network structure of biohybrid hydrogels.

Mater Today Bio

October 2025

Leibniz Institute of Polymer Research Dresden, Division Polymer Biomaterials Science, Max Bergmann Center of Biomaterials Dresden, 01069, Dresden, Germany.

Glycosaminoglycan-based biohybrid hydrogels represent a powerful class of cell-instructive materials with proven potential in tissue engineering and regenerative medicine. Their biomedical functionality relies on a nanoscale polymer network that standard microscopy techniques cannot resolve. Here, we introduce an advanced analytical approach that integrates transmission electron microscopy, X-ray scattering, and computer simulations to directly and quantitatively characterize the nanoscale molecular network structure of these hydrogels.

View Article and Find Full Text PDF

The role of cholesterol metabolism in antiviral immunity has been established, but if and how this cholesterol-mediated immunometabolism can be regulated by specific small molecules is of particular interest in the quest for novel antiviral therapeutics. Here, we first demonstrate that NPC1 is the key cholesterol transporter for suppressing viral replication by changing cholesterol metabolism and triggering the innate immune response via systemic analyses of all possible cholesterol transporters. We then use the Connectivity Map (CMap), a systematic methodology for identifying functional connections between genetic perturbations and drug actions, to screen NPC1 inhibitors, and found that bis-benzylisoquinoline alkaloids (BBAs) exhibit high efficacy in the inhibition of viral infections.

View Article and Find Full Text PDF